已知△ABC是等邊三角形,D是BC邊上任一點(diǎn),連結(jié)AD,并作等邊三角形ADE,若DE⊥AB,那么
BD
DC
的值為______.
如圖所示:∵DE⊥AB
∴∠BDE=30°
∴∠EDA=60°
∴AD⊥BC
即BD=DC
BD
CD
的值是1.
故答案為:1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知BD為等邊△ABC的中線,DE⊥AB于點(diǎn)E,若BC=3,則AE=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)學(xué)課上,李老師出示了如下框中的題目.

小明與同桌小聰討論后,進(jìn)行了如下解答:
(1)特殊情況,探索結(jié)論
當(dāng)點(diǎn)E為AB的中點(diǎn)時,如圖1,確定線段AE與DB的大小關(guān)系,請你直接寫出結(jié)論:AE______DB(填“>”,“<”或“=”).

(2)一般情況,證明結(jié)論:
如圖2,過點(diǎn)E作EFBC,交AC于點(diǎn)F.(請你繼續(xù)完成對以上問題(1)中所填寫結(jié)論的證明)
(3)拓展結(jié)論,設(shè)計(jì)新題:
在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,則CD的長為______(請直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在等邊△ABC中,BD平分∠ABC,BD=BF,則∠CDF的度數(shù)是( 。
A.10°B.15°C.20°D.25°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,△ABC是等邊三角形,點(diǎn)P在△ABC內(nèi),PEAC交AB于E,PFAB交BC于F,交AC于D,已知△ABC的周長是12cm,則PD+PE+PF=______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC是等邊三角形,點(diǎn)P是AC上一點(diǎn),PE⊥BC于點(diǎn)E,交AB于點(diǎn)F,在CB的延長線上截取BD=PA,PD交AB于點(diǎn)I,PA=nPC.
(1)如圖1,若n=1,則
EB
BD
=______,
FI
ED
=______;
(2)如圖2,若∠EPD=60°,試求n和
FI
ED
的值;
(3)如圖3,若點(diǎn)P在AC邊的延長線上,且n=3,其他條件不變,則
EB
BD
=______.(只寫答案不寫過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在直角坐標(biāo)系中,已知△ABC三個頂點(diǎn)的坐標(biāo)分別是A(0,
3
),B(-1,0),C(1,0).
(1)△ABC為______三角形.
(2)若△ABC三個頂點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)分別加3,則所得的圖形與原來的三角形相比,主要的變化是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,△ABC為等邊三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,則四個結(jié)論正確的是(  )
①點(diǎn)P在∠A的平分線上;
②AS=AR;
③QPAR;
④△BRP≌△QSP.
A.全部正確B.僅①和②正確C.僅②③正確D.僅①和③正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知邊長為5的等邊三角形ABC紙片,點(diǎn)E在AC邊上,點(diǎn)F在AB邊上,沿著EF折疊,使點(diǎn)A落在BC邊上的點(diǎn)D的位置,且ED⊥BC,則CE的長是( 。
A.10
3
-15
B.10-5
3
C.5
3
-5
D.20-10
3

查看答案和解析>>

同步練習(xí)冊答案