【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,﹣1)、B(﹣1,1)、C(0,﹣2).

(1)點(diǎn)B關(guān)于坐標(biāo)原點(diǎn)O對(duì)稱的點(diǎn)的坐標(biāo)為;
(2)將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A1B1C;
(3)求過點(diǎn)B1的反比例函數(shù)的解析式.

【答案】
(1)(1,﹣1)
(2)

解:所畫圖形如下:


(3)

解:由(2)得B1點(diǎn)坐標(biāo)為(3,﹣1),

設(shè)過點(diǎn)B1的反比例函數(shù)解析式為

把點(diǎn)B1 (3,﹣1)代入 中,得k=﹣3.

故可得反比例函數(shù)解析式為


【解析】解:(1)點(diǎn)B關(guān)于坐標(biāo)原點(diǎn)O對(duì)稱的點(diǎn)的坐標(biāo)為(1,﹣1);
(1)根據(jù)兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱時(shí),它們的坐標(biāo)符號(hào)相反,可得出答案;(2)分別找到各點(diǎn)的對(duì)應(yīng)點(diǎn),然后順次連接即可得出旋轉(zhuǎn)后得到的△A1B1C.(3)根據(jù)(2)所得的圖形,可得出點(diǎn)B1的坐標(biāo),然后利用待定系數(shù)發(fā)可求出過點(diǎn)B1的反比例函數(shù)的解析式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖象(折線OEFPMN)描述了某汽車在行駛過程中速度與時(shí)間的函數(shù)關(guān)系,下列說法中錯(cuò)誤的是( )

A. 3分時(shí)汽車的速度是40千米/時(shí)

B. 12分時(shí)汽車的速度是0千米/時(shí)

C. 從第3分到第6分,汽車行駛了120千米

D. 從第9分到第12分,汽車的速度從60千米/時(shí)減少到0千米/時(shí)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙P與y軸相切于點(diǎn)C,⊙P的半徑是4,直線y=x被⊙P截得的弦AB的長(zhǎng)為4 , 求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AD∥BC,過點(diǎn)D作DF⊥BC于F.若AD=2,BC=4,DF=2,則DC的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).已知反比例函數(shù)y=k0)的圖象經(jīng)過點(diǎn)A2,m),過點(diǎn)AAB⊥x軸于點(diǎn)B,且△AOB的面積為

1)求km的值;

2)點(diǎn)Cxy)在反比例函數(shù)y=的圖象上,求當(dāng)1≤x≤3時(shí)函數(shù)值y的取值范圍;

3)過原點(diǎn)O的直線l與反比例函數(shù)y=的圖象交于P、Q兩點(diǎn),試根據(jù)圖象直接寫出線段PQ長(zhǎng)度的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某公園里一處矩形風(fēng)景欣賞區(qū)ABCD,長(zhǎng)AB=50米,寬BC=25米,為方便游人觀賞,公園特意修建了如圖所示的小路(圖中非陰影部分),小路的寬均為1米,那小明沿著小路的中間,從出口A到出口B所走的路線(圖中虛線)長(zhǎng)為(

A.100米 B.99米 C.98米 D.74米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中是真命題的是( )

A. 兩條對(duì)角線相等的四邊形是矩形;

B. 有一條對(duì)角線平分一個(gè)內(nèi)角的平行四邊形為菱形;

C. 對(duì)角線互相垂直且相等的四邊形是正方形;

D. 依次連結(jié)四邊形各邊的中點(diǎn),所得四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在ABCD中,延長(zhǎng)DA到點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使得AE=CF,連接EF,分別交AB,CD于點(diǎn)M,N,連接DM,BN.

(1)求證:△AEM≌△CFN;
(2)求證:四邊形BMDN是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為深化義務(wù)教育課程改革,某校積極開展拓展性課程建設(shè),計(jì)劃開設(shè)藝術(shù)、體育、勞技、文學(xué)等多個(gè)類別的拓展性課程,要求每一位學(xué)生都自主選擇一個(gè)類別的拓展性課程.為了了解學(xué)生選擇拓展性課程的情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖(部分信息未給出):

根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問題:

)求本次被調(diào)查的學(xué)生人數(shù).

)將條形統(tǒng)計(jì)圖補(bǔ)充完整.

)若該校共有名學(xué)生,請(qǐng)估計(jì)全校選擇體育類的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案