【題目】(4分)一元二次方程的根的情況是( )
A.有兩個(gè)不相等的實(shí)數(shù)根 B.有兩個(gè)相等的實(shí)數(shù)根
C.沒(méi)有實(shí)數(shù)根 D.無(wú)法確定
【答案】A.
【解析】
試題∵△=,∴方程有兩個(gè)不相等的實(shí)數(shù)根.故選A.
考點(diǎn):根的判別式.
【題型】單選題
【結(jié)束】
9
【題目】已知直線y=kx(k>0)與雙曲線交于點(diǎn)A(x1,y1),B(x2,y2)兩點(diǎn),則x1y2+x2y1的值為【 】
A.﹣6 B.﹣9 C.0 D.9
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一張長(zhǎng)方形紙片,沿對(duì)角線折疊,點(diǎn)的對(duì)應(yīng)點(diǎn)為,與相交于點(diǎn),則下列結(jié)論中不一定正確的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ ABC 和△ADE都是等邊三角形,點(diǎn) B 在 ED 的延長(zhǎng)線上.
(1)求證:△ABD≌△ACE.
(2)求證:AE+CE=BE.
(3)求∠BEC 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,D是弧ACB的中點(diǎn),DE//BC交AC的延長(zhǎng)線于點(diǎn)E,若AE=10,∠ACB=60°,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說(shuō)法:①a>0 ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時(shí),y>0,其中正確的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+3與坐標(biāo)軸分別交于A,B兩點(diǎn),拋物線y=ax2+bx-3a經(jīng)過(guò)點(diǎn)A,B,頂點(diǎn)為C,連接CB并延長(zhǎng)交x軸于點(diǎn)E,點(diǎn)D與點(diǎn)B關(guān)于拋物線的對(duì)稱軸MN對(duì)稱.
(1)求拋物線的解析式及頂點(diǎn)C的坐標(biāo);
(2)求證:四邊形ABCD是直角梯形.
【答案】(1)y=-x2-2x+3,頂點(diǎn)C的坐標(biāo)為(-1,4);(2)證明見(jiàn)解析.
【解析】
(1)解:∵y=x+3與坐標(biāo)軸分別交與A,B兩點(diǎn),∴A點(diǎn)坐標(biāo)(-3,0)、B點(diǎn)坐標(biāo)(0,3).
∵拋物線y=ax2+bx-3a經(jīng)過(guò)A,B兩點(diǎn),
∴
解得
∴拋物線解析式為:y=-x2-2x+3.
∵y=-x2-2x+3=-(x+1)2+4,
∴頂點(diǎn)C的坐標(biāo)為(-1,4).
(2)證明:∵B,D關(guān)于MN對(duì)稱,C(-1,4),B(0,3),
∴D(-2,3).∵B(0,3),A(-3,0),∴OA=OB.
又∠AOB=90°,∴∠ABO=∠BAO=45°.
∵B,D關(guān)于MN對(duì)稱,∴BD⊥MN.
又∵M(jìn)N⊥x軸,∴BD∥x軸.
∴∠DBA=∠BAO=45°.
∴∠DBO=∠DBA+∠ABO=45°+45°=90°.
設(shè)直線BC的解析式為y=kx+b,
把B(0,3),C(-1,4)代入得,
解得
∴y=-x+3.
當(dāng)y=0時(shí),-x+3=0,x=3,∴E(3,0).
∴OB=OE,又∵∠BOE=90°,
∴∠OEB=∠OBE=∠BAO=45°.
∴∠ABE=180°-∠BAE-∠BEA=90°.
∴∠ABC=180°-∠ABE=90°.
∴∠CBD=∠ABC-∠ABD=45°.
∵CM⊥BD,∴∠MCB=45°.
∵B,D關(guān)于MN對(duì)稱,
∴∠CDM=∠CBD=45°,CD∥AB.
又∵AD與BC不平行,∴四邊形ABCD是梯形.
∵∠ABC=90°,∴四邊形ABCD是直角梯形.
【題型】解答題
【結(jié)束】
21
【題目】有兩組卡片,第一組三張卡片上都寫(xiě)著A、B、B,第二組五張卡片上都寫(xiě)著A、B、B、D、E.試用列表法求出從每組卡片中各抽取一張,兩張都是B的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點(diǎn),點(diǎn)P、Q在DC邊上,且PQ=DC.若AB=16,BC=20,則圖中陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC,D是AC中點(diǎn),BE平分∠ABD交AC于點(diǎn)E,點(diǎn)O是AB上一點(diǎn),⊙O過(guò)B、E兩點(diǎn),交BD于點(diǎn)G,交AB于點(diǎn)F.
(1)判斷直線AC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)當(dāng)BD=6,AB=10時(shí),求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A、B兩點(diǎn)分別在x軸和y軸上,OA=1,OB=,連接AB,過(guò)AB中點(diǎn)C1分別作x軸和y軸的垂線,垂足分別是點(diǎn)A1、B1,連接A1B1,再過(guò)A1B1中點(diǎn)C2作x軸和y軸的垂線,照此規(guī)律依次作下去,則點(diǎn)Cn的坐標(biāo)為 ___________。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com