【題目】下列說(shuō)法正確的是( 。

A.同位角相等B.在同一平面內(nèi),如果ab,bc,則ac

C.相等的角是對(duì)頂角D.在同一平面內(nèi),如果ab,bc,則ac

【答案】D

【解析】

根據(jù)平行線的性質(zhì)和判定以及對(duì)頂角的定義進(jìn)行判斷.

解:A選項(xiàng):只有在兩直線平行這一前提下,同位角才相等,故A選項(xiàng)錯(cuò)誤;

B選項(xiàng):在同一平面內(nèi),如果abbc,則ac,故B選項(xiàng)錯(cuò)誤;

C選項(xiàng):相等的角不一定是對(duì)頂角,因?yàn)閷?duì)頂角還有位置限制,故C選項(xiàng)錯(cuò)誤;

D選項(xiàng):由平行公理的推論知,故D選項(xiàng)正確.

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】5x3y20,則25x÷23y2_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,AD=12cm,BC=15cm,點(diǎn)P自點(diǎn)A向D以1cm/s的速度運(yùn)動(dòng),到D點(diǎn)即停止.點(diǎn)Q自點(diǎn)C向B以2cm/s的速度運(yùn)動(dòng),到B點(diǎn)即停止,點(diǎn)P,Q同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)用含t的代數(shù)式表示: AP=;DP=;BQ=;CQ=
(2)當(dāng)t為何值時(shí),四邊形APQB是平行四邊形?
(3)當(dāng)t為何值時(shí),四邊形PDCQ是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若二次函數(shù)y=x2+bx+5配方后為y=(x﹣2)2+k,則b+k=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】八年級(jí)(1)班學(xué)生在完成課題學(xué)習(xí)體質(zhì)健康測(cè)試中的數(shù)據(jù)分析后,利用課外活動(dòng)時(shí)間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠(yuǎn)、長(zhǎng)跑、鉛球中選一項(xiàng)進(jìn)行訓(xùn)練,訓(xùn)練后都進(jìn)行了測(cè)試.現(xiàn)將項(xiàng)目選擇情況及訓(xùn)練后籃球定時(shí)定點(diǎn)投籃測(cè)試成績(jī)整理后作出如下統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)上面提供的信息回答下列問(wèn)題:

1)扇形圖中跳繩部分的扇形圓心角為 度,該班共有學(xué)生 人,訓(xùn)練后籃球定時(shí)定點(diǎn)投籃平均每個(gè)人的進(jìn)球數(shù)是

2)老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進(jìn)行測(cè)試,請(qǐng)用列表或畫樹形圖的方法求恰好選中兩名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=x2﹣2x的頂點(diǎn)為(
A.(1,1)
B.(2,﹣4)
C.(﹣1,1)
D.(1,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)是(﹣1,﹣6),并且該圖象經(jīng)過(guò)點(diǎn)(23)表達(dá)式為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一場(chǎng)籃球賽中球員甲跳起投籃,已知球出手時(shí)離地面m與籃圈中心的水平距離為7 m,當(dāng)球水平運(yùn)行4 m時(shí)達(dá)到離地面的最大高度4 m.設(shè)籃球運(yùn)行的軌跡為拋物線的一部分籃圈距地面3 m,在籃球比賽中,當(dāng)進(jìn)攻方球員要投籃時(shí),防守方球員常借身高優(yōu)勢(shì)及較強(qiáng)的彈跳封殺對(duì)方,這就是平常說(shuō)的蓋帽.(注:蓋帽應(yīng)在球達(dá)到最高點(diǎn)前進(jìn)行,否則就是“干擾球”屬犯規(guī).)

(1)問(wèn):此球能否投中?

(2)此時(shí),防守方球員乙前來(lái)蓋帽已知乙的最大摸球高度為3.19 m,則他如何做才能成功?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若三角形的兩邊長(zhǎng)分別為6 ㎝,9 cm,則其第三邊的長(zhǎng)可能為

A. 2B. 3 cm C. 7D. 16 cm

查看答案和解析>>

同步練習(xí)冊(cè)答案