精英家教網(wǎng)如圖,把含有30°角的三角板ABO置入平面直角坐標(biāo)系中,A,B兩點(diǎn)坐標(biāo)分別為(3,0)和(0,3
3
).動(dòng)點(diǎn)P從A點(diǎn)開始沿折線AO-OB-BA運(yùn)動(dòng),點(diǎn)P在AO,OB,BA上運(yùn)動(dòng),速度分別為1,
3
,2(長度單位/秒).一直尺的上邊緣l從x軸的位置開始以
3
3
(長度單位/秒)的速度向上平行移動(dòng)(即移動(dòng)過程中保持l∥x軸),且分別與OB,AB交于E,F(xiàn)兩點(diǎn)﹒設(shè)動(dòng)點(diǎn)P與動(dòng)直線l同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒,當(dāng)點(diǎn)P沿折線AO-OB-BA運(yùn)動(dòng)一周時(shí),直線l和動(dòng)點(diǎn)P同時(shí)停止運(yùn)動(dòng).
請解答下列問題:
(1)過A,B兩點(diǎn)的直線解析式是
 

(2)當(dāng)t﹦4時(shí),點(diǎn)P的坐標(biāo)為
 
;當(dāng)t﹦
 
,點(diǎn)P與點(diǎn)E重合;
(3)①作點(diǎn)P關(guān)于直線EF的對稱點(diǎn)P′.在運(yùn)動(dòng)過程中,若形成的四邊形PEP′F為菱形,則t的值是多少?
②當(dāng)t﹦2時(shí),是否存在著點(diǎn)Q,使得△FEQ∽△BEP?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
分析:(1)考查了待定系數(shù)法求一次函數(shù);
(2)此題要掌握點(diǎn)P的運(yùn)動(dòng)路線,要掌握點(diǎn)P在不同階段的運(yùn)動(dòng)速度,即可求得;
(3)①此題需要分三種情況分析:點(diǎn)P在線段OA上,在線段OB上,在線段AB上;根據(jù)菱形的判定可知:在線段EF的垂直平分線上與x軸的交點(diǎn),可求的一個(gè);當(dāng)點(diǎn)P在線段OB上時(shí),形成的是三角形,不存在菱形;當(dāng)點(diǎn)P在線段BA上時(shí),根據(jù)對角線互相平分且互相垂直的四邊形是菱形求得.
②當(dāng)t﹦2時(shí),可求的點(diǎn)P的坐標(biāo),即可確定△BEP,根據(jù)相似三角形的判定定理即可求得點(diǎn)Q的坐標(biāo),解題時(shí)要注意答案的不唯一性.
解答:精英家教網(wǎng)解:(1)y=-
3
x+3
3
;(4分)

(2)(0,
3
),t=
9
2
;(4分)(各2分)

(3)①當(dāng)點(diǎn)P在線段AO上時(shí),過F作FG⊥x軸,G為垂足(如圖1)
∵OE=FG,EP=FP,∠EOP=∠FGP=90°
∴△EOP≌△FGP,∴OP=PG﹒
又∵OE=FG=
3
3
t,∠A=60°,∴AG=
FG
tan60°
=
1
3
t
而AP=t,
∴OP=3-t,PG=AP-AG=
2
3
t
由3-t=
2
3
t得t=
9
5
;(1分)
當(dāng)點(diǎn)P在線段OB上時(shí),形成的是三角形,不存在菱形;
當(dāng)點(diǎn)P在線段BA上時(shí),精英家教網(wǎng)
過P作PH⊥EF,PM⊥OB,H、M分別為垂足(如圖2)
∵OE=
3
3
t,∴BE=3
3
-
3
3
t,∴EF=
BE
tan60°
=3-
t
3

∴MP=EH=
1
2
EF=
9-t
6
,又∵BP=2(t-6)
在Rt△BMP中,BP•cos60°=MP
即2(t-6)•
1
2
=
9-t
6
,解得t=
45
7
.(1分)
綜上所述,t為
9
5
45
7
時(shí),四邊形PEP'F為菱形.

②存在﹒理由如下:
∵t=2,∴OE=
2
3
3
,AP=2,OP=1
將△BEP繞點(diǎn)E順時(shí)針方向旋轉(zhuǎn)90°,得到精英家教網(wǎng)△B'EC(如圖3)
∵OB⊥EF,
∴點(diǎn)B'在直線EF上,
∵C點(diǎn)橫坐標(biāo)絕對值等于EO長度,C點(diǎn)縱坐標(biāo)絕對值等于EO-PO長度
∴C點(diǎn)坐標(biāo)為(-
2
3
3
,
2
3
3
-1)
過F作FQ∥B'C,交EC于點(diǎn)Q,
則△FEQ∽△B'EC
BE
FE
=
B′E
FE
=
CE
QE
=
3
,可得Q的坐標(biāo)為(-
2
3
,
3
3
)(1分)
根據(jù)對稱性可得,Q關(guān)于直線EF的對稱點(diǎn)Q'(-
2
3
,
3
)也符合條件.(1分)
點(diǎn)評:此題考查了待定系數(shù)法求一次函數(shù)的解析式,還考查了菱形的性質(zhì)與判定以及相似三角形的判定與性質(zhì),解題的關(guān)鍵要注意數(shù)形結(jié)合思想的應(yīng)用,還要注意答案的不唯一性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:在直角三角形中,30°所對的直角邊是斜邊的一半.
如圖,把含有30°角的三角板ABO置入平面直角坐標(biāo)系中,A,B兩點(diǎn)坐標(biāo)分別為
(3,0)和(0,3
3
).動(dòng)點(diǎn)P從A點(diǎn)開始沿折線AO-OB-BA運(yùn)動(dòng),點(diǎn)P在AO,OB,BA上運(yùn)動(dòng),速度分別為1,
3
,2(單位長度/秒).一直尺的上邊緣l從x軸的位置開始以
3
3
(單位長度/秒)的速度向上平行移動(dòng)(即移動(dòng)過程中保持l∥x軸),且分別與OB,AB交于E,F(xiàn)兩點(diǎn)﹒設(shè)動(dòng)點(diǎn)P與動(dòng)直線l同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒,當(dāng)點(diǎn)P沿折線AO-OB-BA運(yùn)動(dòng)一周時(shí),直線l和動(dòng)點(diǎn)P同時(shí)停止運(yùn)動(dòng).
請解答下列問題:
(1)過A,B兩點(diǎn)的直線解析式是
y=-
3
x+3
3
y=-
3
x+3
3
;
(2)當(dāng)t﹦4時(shí),點(diǎn)P的坐標(biāo)為
(0,
3
(0,
3
;當(dāng)t=
9
2
9
2
,點(diǎn)P與點(diǎn)E重合;
(3)作點(diǎn)P關(guān)于直線EF的對稱點(diǎn)P′.在運(yùn)動(dòng)過程中,若形成的四邊形PEP′F為菱形,則t的值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:浙江省期中題 題型:填空題

閱讀材料:在直角三角形中,30°所對的直角邊是斜邊的一半.如圖,把含有30°角的三角板ABO置入平面直角坐標(biāo)系中,A,B兩點(diǎn)坐標(biāo)分別為(3,0)和(0, ).動(dòng)點(diǎn)P從A點(diǎn)開始沿折線AO﹣OB﹣BA運(yùn)動(dòng),點(diǎn)P在AO,OB,BA上運(yùn)動(dòng)的面四民﹒數(shù)學(xué)興趣小組對捐款情況進(jìn)行了抽樣調(diào)查,速度分別為1, ,2(單位長度/秒).一直尺的上邊緣l從x軸的位置開始以 (單位長度/秒)的速度向上平行移動(dòng)(即移動(dòng)過程中保持l∥x軸),且分別與OB,AB交于E,F(xiàn)兩點(diǎn)﹒設(shè)動(dòng)點(diǎn)P與動(dòng)直線l同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒,當(dāng)點(diǎn)P沿折線AO﹣OB﹣BA運(yùn)動(dòng)一周時(shí),直線l和動(dòng)點(diǎn)P同時(shí)停止運(yùn)動(dòng).
請解答下列問題:
(1)過A,B兩點(diǎn)的直線解析式是_____________;
(2)當(dāng)t﹦4時(shí),點(diǎn)P的坐標(biāo)為________________;當(dāng)t=____________   ,點(diǎn)P與點(diǎn)E重合;
(3)作點(diǎn)P關(guān)于直線EF的對稱點(diǎn)P′.在運(yùn)動(dòng)過程中,若形成的四邊形PEP′F為菱形,則t的值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,把含有30°角的三角板ABO置入平面直角坐標(biāo)系中,A,B兩點(diǎn)坐標(biāo)分別為(3,0)和(0,3).動(dòng)點(diǎn)P從A點(diǎn)開始沿折線AO-OB-BA運(yùn)動(dòng),點(diǎn)P在AO,OB,BA上運(yùn)動(dòng)的面四民﹒數(shù)學(xué)興趣小組對捐款情況進(jìn)行了抽樣調(diào)查,速度分別為1,,2 (長度單位/秒)﹒一直尺的上邊緣l從x軸的位置開始以 (長度單位/秒)的速度向上平行移動(dòng)(即移動(dòng)過程中保持l∥x軸),且分別與OB,AB交于E,F(xiàn)兩點(diǎn)﹒設(shè)動(dòng)點(diǎn)P與動(dòng)直線l同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒,當(dāng)點(diǎn)P沿折線AO-OB-BA運(yùn)動(dòng)一周時(shí),直線l和動(dòng)點(diǎn)P同時(shí)停止運(yùn)動(dòng).
請解答下列問題:
【小題1】過A,B兩點(diǎn)的直線解析式是      ▲       
【小題2】當(dāng)t﹦4時(shí),點(diǎn)P的坐標(biāo)為   ▲    ;當(dāng)t ﹦   ▲    ,點(diǎn)P與點(diǎn)E重合;
【小題3】① 作點(diǎn)P關(guān)于直線EF的對稱點(diǎn)P′. 在運(yùn)動(dòng)過程中,若形成的四邊形PEP′F為菱形,則t的值是多少?
② 當(dāng)t﹦2時(shí),是否存在著點(diǎn)Q,使得△FEQ ∽△BEP ?若存在, 求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)卷(山東萊蕪) 題型:解答題

如圖,把含有30°角的三角板ABO置入平面直角坐標(biāo)系中,A,B兩點(diǎn)坐標(biāo)分別為(3,0)和(0,3).動(dòng)點(diǎn)P從A點(diǎn)開始沿折線AO-OB-BA運(yùn)動(dòng),點(diǎn)P在AO,OB,BA上運(yùn)動(dòng)的面四民﹒數(shù)學(xué)興趣小組對捐款情況進(jìn)行了抽樣調(diào)查,速度分別為1,,2 (長度單位/秒)﹒一直尺的上邊緣l從x軸的位置開始以 (長度單位/秒)的速度向上平行移動(dòng)(即移動(dòng)過程中保持l∥x軸),且分別與OB,AB交于E,F(xiàn)兩點(diǎn)﹒設(shè)動(dòng)點(diǎn)P與動(dòng)直線l同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒,當(dāng)點(diǎn)P沿折線AO-OB-BA運(yùn)動(dòng)一周時(shí),直線l和動(dòng)點(diǎn)P同時(shí)停止運(yùn)動(dòng).

請解答下列問題:
(1)過A,B兩點(diǎn)的直線解析式是  ▲ ;
(2)當(dāng)t﹦4時(shí),點(diǎn)P的坐標(biāo)為  ▲  ;當(dāng)t ﹦  ▲  ,點(diǎn)P與點(diǎn)E重合;
(3)
① 作點(diǎn)P關(guān)于直線EF的對稱點(diǎn)P′. 在運(yùn)動(dòng)過程中,若形成的四邊形PEP′F為菱形,則t的值是多少?
② 當(dāng)t﹦2時(shí),是否存在著點(diǎn)Q,使得△FEQ ∽△BEP ?若存在, 求出點(diǎn)Q的坐標(biāo);
若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案