【題目】勾股定理神秘而美妙,它的證法多樣,其中的“面積法”給了李明靈感,他驚喜地發(fā)現(xiàn);當(dāng)兩個(gè)全等的直角三角形如圖(1)擺放時(shí)可以利用面積法”來(lái)證明勾股定理,過(guò)程如下
如圖(1)∠DAB=90°,求證:a2+b2=c2
證明:連接DB,過(guò)點(diǎn)D作DF⊥BC交BC的延長(zhǎng)線(xiàn)于點(diǎn)F,則DF=b-a
S四邊形ADCB=
S四邊形ADCB=
∴化簡(jiǎn)得:a2+b2=c2
請(qǐng)參照上述證法,利用“面積法”完成如圖(2)的勾股定理的證明,如圖(2)中∠DAB=90°,求證:a2+b2=c2
【答案】見(jiàn)解析.
【解析】
首先連結(jié)BD,過(guò)點(diǎn)B作DE邊上的高BF,則BF=b-a,表示出S五邊形ACBED,兩者相等,整理即可得證.
證明:連結(jié)BD,過(guò)點(diǎn)B作DE邊上的高BF,則BF=b-a,
∵S五邊形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,
又∵S五邊形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b-a),
∴ab+b2+ab=ab+c2+a(b-a),
∴a2+b2=c2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:關(guān)于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.
(1)求證:無(wú)論m取何值時(shí),方程恒有實(shí)數(shù)根;
(2)若關(guān)于x的二次函數(shù)y=mx2﹣(3m﹣1)x+2m﹣2的圖象與x軸兩交點(diǎn)間的距離為2時(shí),求拋物線(xiàn)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,解決問(wèn)題:
學(xué)習(xí)了勾股定理后我們知道:直角三角形兩條直角邊的平方和等于斜邊的平方.根據(jù)勾股定理我們定義:如圖①,點(diǎn)M、N是線(xiàn)段AB上兩點(diǎn),如果線(xiàn)段AM、MN、NB能構(gòu)成直角三角形,則稱(chēng)點(diǎn)M、N是線(xiàn)段AB的勾股點(diǎn)
解決問(wèn)題
(1)在圖①中,如果AM=2,MN=3,則NB= .
(2)如圖②,已知點(diǎn)C是線(xiàn)段AB上一定點(diǎn)(AC<BC),在線(xiàn)段AB上求作一點(diǎn)D,使得C、D是線(xiàn)段AB的勾股點(diǎn).李玉同學(xué)是這樣做的:過(guò)點(diǎn)C作直線(xiàn)GH⊥AB,在GH上截取CE=AC,連接BE,作BE的垂直平分線(xiàn)交AB于點(diǎn)D,則C、D是線(xiàn)段AB的勾股點(diǎn)你認(rèn)為李玉同學(xué)的做法對(duì)嗎?請(qǐng)說(shuō)明理由
(3)如圖③,DE是△ABC的中位線(xiàn),M、N是AB邊的勾股點(diǎn)(AM<MN<NB),連接CM、CN分別交DE于點(diǎn)G、H求證:G、H是線(xiàn)段DE的勾股點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題背景:如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分別是BC,CD上的點(diǎn),且∠EAF=60°,請(qǐng)?zhí)骄繄D中線(xiàn)段BE,EF,FD之間的數(shù)量關(guān)系是什么?
小明探究此問(wèn)題的方法是:延長(zhǎng)FD到點(diǎn)G,使DG=BE,連結(jié)AG.先證明△ABE≌△ADG,得AE=AG;再由條件可得∠EAF=∠GAF,證明△AEF≌△AGF,進(jìn)而可得線(xiàn)段BE,EF,FD之間的數(shù)量關(guān)系是 .
(2)拓展應(yīng)用:
如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F分別是BC,CD上的點(diǎn),且∠EAF=∠BAD.問(wèn)(1)中的線(xiàn)段BE,EF,FD之間的數(shù)量關(guān)系是否還成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某專(zhuān)賣(mài)店經(jīng)市場(chǎng)調(diào)查得知,一種商品的月銷(xiāo)售量 Q(單位:噸)與銷(xiāo)售價(jià)格 x(單位:萬(wàn)元/噸)的關(guān)系可用下圖中的折線(xiàn)表示.
(1)寫(xiě)出月銷(xiāo)售量 Q 關(guān)于銷(xiāo)售價(jià)格 x 的關(guān)系;
(2)如果該商品的進(jìn)價(jià)為 5 萬(wàn)元/噸,除去進(jìn)貨成本外,專(zhuān)賣(mài)店銷(xiāo)售該商品每月的固定成本為 10 萬(wàn)元,問(wèn)該商品 每噸定價(jià)多少萬(wàn)元時(shí),銷(xiāo)售該商品的月利潤(rùn)最大?并求月利潤(rùn)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填寫(xiě)下列證明過(guò)程中的推理根據(jù):
已知:如圖所示,AC,BD相交于O,DF平分∠CDO與AC相交于F,BE平分于∠ABO與AC相交于E,∠A=∠C.求證:∠1=∠2.
證明:∵∠A=∠C(________),
∴AB∥CD (__________________________________),
∴∠ABO=∠CDO (__________________________________),
又∵∠1=CDO,∠2=∠ABO (__________________________________),
∴∠1=∠2(____________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某專(zhuān)賣(mài)店經(jīng)市場(chǎng)調(diào)查得知,一種商品的月銷(xiāo)售量 Q(單位:噸)與銷(xiāo)售價(jià)格 x(單位:萬(wàn)元/噸)的關(guān)系可用下圖中的折線(xiàn)表示.
(1)寫(xiě)出月銷(xiāo)售量 Q 關(guān)于銷(xiāo)售價(jià)格 x 的關(guān)系;
(2)如果該商品的進(jìn)價(jià)為 5 萬(wàn)元/噸,除去進(jìn)貨成本外,專(zhuān)賣(mài)店銷(xiāo)售該商品每月的固定成本為 10 萬(wàn)元,問(wèn)該商品 每噸定價(jià)多少萬(wàn)元時(shí),銷(xiāo)售該商品的月利潤(rùn)最大?并求月利潤(rùn)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,,,直線(xiàn)經(jīng)過(guò)點(diǎn),且于點(diǎn),于點(diǎn).易得(不需要證明).
(1)當(dāng)直線(xiàn)繞點(diǎn)旋轉(zhuǎn)到圖2的位置時(shí),其余條件不變,你認(rèn)為上述結(jié)論是否成立?若成立,寫(xiě)出證明過(guò)程;若不成立,請(qǐng)寫(xiě)出此時(shí)之間的數(shù)量關(guān)系,并說(shuō)明理由;
(2)當(dāng)直線(xiàn)繞點(diǎn)旋轉(zhuǎn)到圖3的位置時(shí),其余條件不變,請(qǐng)直接寫(xiě)出此時(shí)之間的數(shù)量關(guān)系(不需要證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,一個(gè)多邊形的每一個(gè)外角都是它相鄰的內(nèi)角的.試求出:(1)這個(gè)多邊形的每一個(gè)外角的度數(shù);(2)求這個(gè)多邊形的內(nèi)角和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com