【題目】如圖,已知:在平行四邊形ABCD中,點E、F、G、H分別在邊AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.

(1)求證:△AEH≌△CGF
(2)求證:四邊形EFGH是菱形.

【答案】
(1)

證明:如圖,∵四邊形ABCD是平行四邊形,

∴∠A=∠C,

在△AEH與△CGF中,

,

∴△AEH≌△CGF(SAS)


(2)

證明:∵四邊形ABCD是平行四邊形,

∴AB=CD,AD=BC,∠B=∠D.

又∵AE=CG,AH=CF,

∴BE=DG,BF=DH,

在△BEF與△DGH中,

∴△BEF≌△DGH(SAS),

∴EF=GH.

又由(1)知,△AEH≌△CGF,

∴EH=GF,

∴四邊形EFGH是平行四邊形,

∴HG∥EF,

∴∠HGE=∠FEG,

∵EG平分∠HEF,

∴∠HEG=∠FEG,

∴∠HEG=∠HGE,

∴HE=HG,

∴四邊形EFGH是菱形.


【解析】(1)由全等三角形的判定定理SAS證得結(jié)論;
(2)易證四邊形EFGH是平行四邊形,那么EF∥GH,那么∠HGE=∠FEG,而EG是角平分線,易得∠HEG=∠FEG,根據(jù)等量代換可得∠HEG=∠HGE,從而有HE=HG,易證四邊形EFGH是菱形.
此題考查了平行四邊形的判定;與性質(zhì),菱形的判定與性質(zhì)以及全等三角形的判定.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程ax2﹣3x﹣1=0的兩個不相等的實數(shù)根都在﹣1和0之間(不包括﹣1和0),則a的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘海輪位于燈塔P的北偏東53°方向,距離燈塔100海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向上的B處.
(參考數(shù)據(jù):sin53°=0.80,cos53°=0.60,tan53°=0.33,=1.41)

(1)在圖中畫出點B,并求出B處與燈塔P的距離(結(jié)果取整數(shù));
(2)用方向和距離描述燈塔P相對于B處的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=2x+(3﹣a)與x軸的交點在A(2,0)、B(3,0)之間(包括A、B兩點),則a的取值范圍是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD=AB=BC,連接AC,且∠ACD=30°,tan∠BAC=,CD=3,則AC= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大學(xué)生小劉回鄉(xiāng)創(chuàng)辦小微企業(yè),初期購得原材料若干噸,每天生產(chǎn)相同件數(shù)的某種產(chǎn)品,單件產(chǎn)品所耗費的原材料相同.當生產(chǎn)6天后剩余原材料36噸,當生產(chǎn)10天后剩余原材料30噸.若剩余原材料數(shù)量小于或等于3噸,則需補充原材料以保證正常生產(chǎn).
(1)求初期購得的原材料噸數(shù)與每天所耗費的原材料噸數(shù);
(2)若生產(chǎn)16天后,根據(jù)市場需求每天產(chǎn)量提高20%,則最多再生產(chǎn)多少天后必須補充原材料?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,臺風(fēng)中心位于點O處,并沿東北方向(北偏東45°),以40千米/小時的速度勻速移動,在距離臺風(fēng)中心50千米的區(qū)域內(nèi)會受到臺風(fēng)的影響,在點O的正東方向,距離千米的地方有一城市A.

(1)問:A市是否會受到此臺風(fēng)的影響,為什么?
(2)在點O的北偏東15°方向,距離80千米的地方還有一城市B,問:B市是否會受到此臺風(fēng)的影響?若受到影響,請求出受到影響的時間;若不受到影響,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式組的解集在數(shù)軸上表示為( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為⊙O外一點,PA,PB是⊙O的切線,A,B為切點,PA=,∠P=60°,則圖中陰影部分的面積為

查看答案和解析>>

同步練習(xí)冊答案