【題目】在△ABC中,∠ACB=45°,點(diǎn)D為射線(xiàn)BC上一動(dòng)點(diǎn)(與點(diǎn)B、C不重合),連接AD,以AD為一邊在AD一側(cè)作正方形ADEF(如圖1).
(1)如果AB=AC,且點(diǎn)D在線(xiàn)段BC上運(yùn)動(dòng),證明:CF⊥BD;
(2)如果AB≠AC,且點(diǎn)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上運(yùn)動(dòng),請(qǐng)?jiān)趫D2中畫(huà)出相應(yīng)的示意圖,此時(shí)(1)中的結(jié)論是否成立?請(qǐng)說(shuō)明理由;
(3)設(shè)正方形ADEF的邊DE所在直線(xiàn)與直線(xiàn)CF相交于點(diǎn)P,若AC=4,CD=2,求線(xiàn)段CP的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)AB≠AC時(shí),CF⊥BD的結(jié)論成立.理由見(jiàn)解析;(3)線(xiàn)段CP的長(zhǎng)為2﹣或2+.
【解析】
(1)證出∠BAC=∠DAF=90°,得出∠BAD=∠CAF;可證△DAB≌△FAC(SAS),得∠ACF=∠ABD=45°,得出∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(2)過(guò)點(diǎn)A作AG⊥AC交BC于點(diǎn)G,可得出AC=AG,易證△GAD≌△CAF(SAS),得出∠ACF=∠AGD=45°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(3)分兩種情況去解答.①點(diǎn)D在線(xiàn)段BC上運(yùn)動(dòng),求出AQ=CQ=4.即DQ=4﹣2=2,易證△AQD∽△DCP,得出對(duì)應(yīng)邊成比例,即可得出CP=;②點(diǎn)D在線(xiàn)段BC延長(zhǎng)線(xiàn)上運(yùn)動(dòng)時(shí),同理得出CP=.
(1)證明:∵四邊形ADEF是正方形,
∴∠DAF=90°,AD=AF,
∵AB=AC,∠BAC=90°,
∴∠BAD+∠DAC=∠CAF+∠DAC=90°,
∴∠BAD=∠CAF,
在△BAD和△CAF中,,
∴△BAD≌△CAF(SAS),
∴∠ACF=∠ABD=45°
∵AB=AC,∠BAC=90°,
∴∠ACB=∠ABD=45°
∴∠BCF=∠ACB+∠ACF=90°,
∴CF⊥BD;
(2)解:如圖2所示:AB≠AC時(shí),CF⊥BD的結(jié)論成立.理由如下:
過(guò)點(diǎn)A作GA⊥AC交BC于點(diǎn)G,
則∠GAD=∠CAF=90°+∠CAD,
∵∠ACB=45°,
∴∠AGD=45°,
∴AC=AG,
在△GAD和△CAF中, ,
∴△GAD≌△CAF(SAS),
∴∠ACF=∠AGD=45°,
∴∠BCF=∠ACB+∠ACF=90°,
∴CF⊥BD;
(3)解:過(guò)點(diǎn)A作AQ⊥BC交CB的延長(zhǎng)線(xiàn)于點(diǎn)Q,
①點(diǎn)D在線(xiàn)段BC上運(yùn)動(dòng)時(shí),如圖3所示:
∵∠BCA=45°,
∴△ACQ是等腰直角三角形,
∵AC=4
∴AQ=CQ=AC=.
∴DQ=CQ﹣CD=﹣2,
∵AQ⊥BC,∠ADE=90°,
∴∠DAQ+∠ADQ=∠ADQ+∠PDC=90°,
∴∠DAQ=∠PDC,
∵∠AQD=∠DCP=90°,
∴△DCP∽△AQD,
∴,即,
解得:CP=2﹣;
②點(diǎn)D在線(xiàn)段BC延長(zhǎng)線(xiàn)上運(yùn)動(dòng)時(shí),如圖4所示:
∵∠BCA=45°,
∴AQ=CQ=,
∴DQ=AQ+CD=+2.
∵AQ⊥BC于Q,
∴∠Q=∠FAD=90°,
∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D,
∴∠ADQ=∠AFC′,
則△AQD∽△AC′F.
∴CF⊥BD,
∴△AQD∽△DCP,
∴,即,
解得:CP=,
綜上所述,線(xiàn)段CP的長(zhǎng)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)與拋物線(xiàn): 相交于和點(diǎn)兩點(diǎn).
⑴求拋物線(xiàn)的函數(shù)表達(dá)式;
⑵若點(diǎn)是位于直線(xiàn)上方拋物線(xiàn)上的一動(dòng)點(diǎn),以為相鄰兩邊作平行四邊形,當(dāng)平行四邊形的面積最大時(shí),求此時(shí)四邊形的面積及點(diǎn)的坐標(biāo);
⑶在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在定點(diǎn),使拋物線(xiàn)上任意一點(diǎn)到點(diǎn)的距離等于到直線(xiàn)的距離,若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E是對(duì)角線(xiàn)BD上的一點(diǎn),過(guò)點(diǎn)C作CF∥DB,且CF=DE,連接AE,BF,EF.
(1)求證:△ADE≌△BCF;
(2)若∠ABE+∠BFC=180°,則四邊形ABFE是什么特殊四邊形?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小婷在放學(xué)路上,看到隧道上方有一塊宣傳“中國(guó)﹣南亞博覽會(huì)”的豎直標(biāo)語(yǔ)牌CD.她在A點(diǎn)測(cè)得標(biāo)語(yǔ)牌頂端D處的仰角為42°,測(cè)得隧道底端B處的俯角為30°(B,C,D在同一條直線(xiàn)上),AB=10m,隧道高6.5m(即BC=65m),求標(biāo)語(yǔ)牌CD的長(zhǎng)(結(jié)果保留小數(shù)點(diǎn)后一位).(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年4月23日是第二十四個(gè)“世界讀書(shū)日“.某校組織讀書(shū)征文比賽活動(dòng),評(píng)選出一、二、三等獎(jiǎng)若干名,并繪成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(不完整),請(qǐng)你根據(jù)圖中信息解答下列問(wèn)題:
(1)求本次比賽獲獎(jiǎng)的總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中“二等獎(jiǎng)”所對(duì)應(yīng)扇形的圓心角度數(shù);
(3)學(xué)校從甲、乙、丙、丁4位一等獎(jiǎng)獲得者中隨機(jī)抽取2人參加“世界讀書(shū)日”宣傳活動(dòng),請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法,求出恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某縣建檔立卡貧困戶(hù)對(duì)精準(zhǔn)扶貧政策落實(shí)的滿(mǎn)意度,現(xiàn)從全縣建檔立卡貧困戶(hù)中隨機(jī)抽取了部分貧困戶(hù)進(jìn)行了調(diào)查(把調(diào)查結(jié)果分為四個(gè)等級(jí):A級(jí):非常滿(mǎn)意;B級(jí):滿(mǎn)意;C級(jí):基本滿(mǎn)意;D級(jí):不滿(mǎn)意),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解決下列問(wèn)題:
(1)本次抽樣調(diào)查測(cè)試的建檔立卡貧困戶(hù)的總戶(hù)數(shù)______.
(2)圖1中,∠α的度數(shù)是______,并把圖2條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)某縣建檔立卡貧困戶(hù)有10000戶(hù),如果全部參加這次滿(mǎn)意度調(diào)查,請(qǐng)估計(jì)非常滿(mǎn)意的人數(shù)約為多少戶(hù)?
(4)調(diào)查人員想從5戶(hù)建檔立卡貧困戶(hù)(分別記為)中隨機(jī)選取兩戶(hù),調(diào)查他們對(duì)精準(zhǔn)扶貧政策落實(shí)的滿(mǎn)意度,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出選中貧困戶(hù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABMN中,AN=1,點(diǎn)C是MN的中點(diǎn),分別連接AC,BC,且BC=2,點(diǎn)D為AC的中點(diǎn),點(diǎn)E為邊AB上一個(gè)動(dòng)點(diǎn),連接DE,點(diǎn)A關(guān)于直線(xiàn)DE的對(duì)稱(chēng)點(diǎn)為點(diǎn)F,分別連接DF,EF.當(dāng)EF⊥AC時(shí),AE的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線(xiàn)y=x+c與x軸交于點(diǎn)A(-3,0),與y軸交于點(diǎn)C,拋物線(xiàn)y=-x2+bx+c經(jīng)過(guò)點(diǎn)A、C.
(1)求拋物線(xiàn)的解析式;
(2)如圖2所示,M是線(xiàn)段0A上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M垂直于x軸的直線(xiàn)與直線(xiàn)AC和拋物線(xiàn)分別交于點(diǎn)P、N.若以C、P、N為頂點(diǎn)的三角形與△APM相似,求四邊形MNCO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,cm,cm,點(diǎn)為的中點(diǎn),點(diǎn)E為AB的中點(diǎn).點(diǎn)為AB邊上一動(dòng)點(diǎn),從點(diǎn)B出發(fā),運(yùn)動(dòng)到點(diǎn)A停止,將射線(xiàn)DM繞點(diǎn)順時(shí)針旋轉(zhuǎn)度(其中),得到射線(xiàn)DN,DN與邊AB或AC交于點(diǎn)N.設(shè)、兩點(diǎn)間的距離為cm,,兩點(diǎn)間的距離為cm.
小濤根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究.
下面是小濤的探究過(guò)程,請(qǐng)補(bǔ)充完整.
(1)列表:按照下表中自變量x的值進(jìn)行取點(diǎn)、畫(huà)圖、測(cè)量,分別得到了與的幾組對(duì)應(yīng)值:
x/cm | 0 | 0.3 | 0.5 | 1.0 | 1.5 | 1.8 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 4.8 | 5.0 |
y/cm | 2.5 | 2.44 | 2.42 | 2.47 | 2.79 | 2.94 | 2.52 | 2.41 | 2.48 | 2.66 | 2.9 | 3.08 | 3.2 |
請(qǐng)你通過(guò)測(cè)量或計(jì)算,補(bǔ)全表格;
(2)描點(diǎn)、連線(xiàn):在平面直角坐標(biāo)系中,描出補(bǔ)全后的表格中各組數(shù)值所對(duì)應(yīng)的點(diǎn),并畫(huà)出函數(shù)關(guān)于的圖象.
(3)結(jié)合函數(shù)圖象,解決問(wèn)題:當(dāng)時(shí),的長(zhǎng)度大約是 cm.(結(jié)果保留一位小數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com