【題目】如圖,拋物線y=-x2+2x+m+1交x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)判斷:①當(dāng)x>0時(shí),y>0;②若a=-1,則b=3;③拋物線上有兩點(diǎn)P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,則y1>y2;④點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為E,點(diǎn)G、F分別在x軸和y軸上,當(dāng)m=2時(shí),四邊形EDGF周長(zhǎng)的最小值為,其中,判斷正確的序號(hào)是( )
A.①②B.②③C.①③D.②③④
【答案】B
【解析】
根據(jù)拋物線在x軸上方所對(duì)應(yīng)的自變量的范圍可判斷①;先求出拋物線的對(duì)稱軸,利用拋物線的對(duì)稱性求出b可判斷②;先求出拋物線的對(duì)稱軸,然后比較點(diǎn)P和Q到對(duì)稱軸距離的大小,然后可以確定函數(shù)值的大小,即可判斷③;先求出D、E兩點(diǎn)的坐標(biāo),然后求出符合題意的對(duì)稱點(diǎn)坐標(biāo)分別為(-1,4)(2,-3),然后根據(jù)勾股定理計(jì)算即可判斷④.
①當(dāng)x>0時(shí),y不一定大于0,故錯(cuò)誤;
②對(duì)稱軸為1,當(dāng)a=-1,b=3,故正確;
③>1,∴
Q點(diǎn)距離對(duì)稱軸較遠(yuǎn),∴y1>y2,故正確;
④m=2時(shí),D(1,4),E(2,3),
可得出DE的對(duì)稱點(diǎn)為(-1,4)(2,-3),
四邊形DEFG的周長(zhǎng)為,故錯(cuò)誤;
故答案為:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(猜想) 如圖1,已知△ABC是等腰直角三角形,∠BAC=90°,點(diǎn)D是BC的中點(diǎn).作正方形DEFG,使點(diǎn)A,C分別在DG和DE上,連接AE,BG.試猜想線段BG和AE的數(shù)量關(guān)系是 ;
(探究) 如圖2,正方形DEFG繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)α(0°<α<360°).試判斷你猜想的結(jié)論是否仍然成立,請(qǐng)利用圖2證明你的結(jié)論;
(應(yīng)用) 在圖2中,BC=DE=4.當(dāng)AE取最大值時(shí),AF的值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)被它的兩條直徑分成了四個(gè)分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),待轉(zhuǎn)盤(pán)自動(dòng)停止后,指針指向一個(gè)扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時(shí),稱為轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次(若指針指向兩個(gè)扇形的交線,則不計(jì)轉(zhuǎn)動(dòng)的次數(shù),重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),直到指針指向一個(gè)扇形的內(nèi)部為止)
(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,求轉(zhuǎn)出的數(shù)字是-2的概率;
(2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)兩次,用樹(shù)狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點(diǎn),過(guò)C作CD⊥AB于點(diǎn)D,CD交AE于點(diǎn)F,過(guò)C作CG∥AE交BA的延長(zhǎng)線于點(diǎn)G.
(1)求證:CG是⊙O的切線.
(2)求證:AF=CF.
(3)若sinG=0.6,CF=4,求GA的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,AC與⊙O交于點(diǎn)F,弦AD平分∠BAC,DE⊥AC,垂足為E點(diǎn).
(1)求證:DE是⊙O的切線;
(2)若⊙O的半徑為2,∠BAC=60°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BC=10,高AD=8,M、N、P分別在邊AB、BC、AC上移動(dòng),但不與A、B、C重合,連接MN、NP、MP,且MP始終與BC保持平行,AD與MP相交于點(diǎn)E,設(shè)MP=x,△MNP的面積用y表示.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)x取什么值時(shí),y有最大值,并求出的最大值;
(3)當(dāng)x取什么值時(shí),△MNP是等腰直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩同學(xué)玩轉(zhuǎn)盤(pán)游戲時(shí),把質(zhì)地相同的兩個(gè)盤(pán)A、B分別平均分成2份和3份,并在每一份內(nèi)標(biāo)有數(shù)字如圖.游戲規(guī)則:甲、乙兩同學(xué)分別同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán)各1次,當(dāng)轉(zhuǎn)盤(pán)停止后,指針?biāo)趨^(qū)域的數(shù)字之積為偶數(shù)時(shí)甲勝;數(shù)字之積為奇數(shù)時(shí)乙勝.若指針恰好在分割線上,則需要重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán).
(1)用樹(shù)狀圖或列表的方法,求甲獲勝的概率;
(2)這個(gè)游戲規(guī)則對(duì)甲、乙雙方公平嗎?請(qǐng)判斷并說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),連接.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)為拋物線對(duì)稱軸上一點(diǎn),拋物線上是否存在點(diǎn),使得以,,,為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)是直線上方拋物線上的點(diǎn),若,求出點(diǎn)的到軸的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax﹣a(a為常數(shù))的圖象與y軸相交于點(diǎn)A,與函數(shù)(x>0)的圖象相交于點(diǎn)B(t,1).
(1)求點(diǎn)B的坐標(biāo)及一次函數(shù)的解析式;
(2)點(diǎn)P的坐標(biāo)為(m,m)(m>0),過(guò)P作PE∥x軸,交直線AB于點(diǎn)E,作PF∥y軸,交函數(shù)(x>0)的圖象于點(diǎn)F.
①若m=2,比較線段PE,PF的大小;
②直接寫(xiě)出使PE≤PF的m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com