【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是菱形,點A的坐標(biāo)為(0,),分別以AB為圓心,大于AB的長為半徑作弧,兩弧交于EF兩點,直線EF恰好經(jīng)過點D,交AB于點H,則四邊形HBCD的周長為(  )

A.B.6C.D.

【答案】D

【解析】

連接DB,如圖,利用基本作圖得到EF垂直平分AB,則DADB,再根據(jù)菱形的性質(zhì)得到ADBC,ADAB,則可判斷ADB為等邊三角形,所以∠DAB=∠ABO60°,然后計算出AD2,,從而四邊形HBCD的周長.

連接DB,如圖,

由作法得EF垂直平分AB,

DADB,AH=BH,

∵四邊形ABCD是菱形,

ADBC,ADAB,

ADABDB

∴△ADB為等邊三角形,

∴∠DAB60°,

∴∠ABO60°,

A0,),

OA

OBOA1,AB2OB2

ADAB2,

AH=1,

,

∴四邊形HBCD的周長為:1+2+2+=,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+4a0)與x軸交于A(﹣3,0),C 40)兩點,與y軸交于點B

1)求這條拋物線的頂點坐標(biāo);

2)已知ADAB(點D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個點Q以某一速度從點B沿線段BC移動,經(jīng)過ts)的移動,線段PQBD垂直平分,求t的值;

3)在(2)的情況下,拋物線的對稱軸上是否存在一點M,使MQ+MC的值最?若存在,請求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A、B兩點,與y軸交于點C,且OA2,OC3

1)求拋物線的解析式;

2)點D2,2)是拋物線上一點,那么在拋物線的對稱軸上,是否存在一點P,使得BDP的周長最小,若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

3)連接AD并延長,過拋物線上一點QQ不與A重合)作QNx軸,垂足為N,與射線交于點M,使得QM3MN,若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織七年級學(xué)生參加冬令營活動,本次冬令營活動分為甲、乙、丙三組進(jìn)行.如圖,條形統(tǒng)計圖和扇形統(tǒng)計圖反映了學(xué)生參加冬令營活動的報名情況,請你根據(jù)圖中的信息回答下列問題:

1)七年級報名參加本次活動的總?cè)藬?shù)為 ,扇形統(tǒng)計圖中,表示甲組部分的扇形的圓心角是 度;

2)補全條形統(tǒng)計圖;

3)根據(jù)實際需要,將從甲組抽調(diào)部分學(xué)生到丙組,使丙組人數(shù)是甲組人數(shù)的3倍,則應(yīng)從甲組抽調(diào)多少名學(xué)生到丙組?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠C90°,BC3,AC4,BD平分∠ABC,將△ABC繞著點A旋轉(zhuǎn)后,點B、C的對應(yīng)點分別記為B1、C1,如果點B1落在射線BD上,那么CC1的長度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC,以AC為直徑作⊙OBC于點D,過點DDEAB,垂足為E

1)求證:DE是⊙O的切線;

2)若,AC=8,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校準(zhǔn)備租用一批汽車,現(xiàn)有甲、乙兩種大客車,甲種客車每輛載客量45人,乙種客車每輛載客量30人,已知1輛甲種客車和3輛乙種客車共需租金1240元,3輛甲種客車和2輛乙種客車共需租金1760元.

(1)求1輛甲種客車和1輛乙種客車的租金分別是多少元?

(2)學(xué)校計劃租用甲、乙兩種客車共8輛,送330名師生集體外出活動,最節(jié)省的租車費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點在平行四邊形的對角線上,過點、分別作、的平行線相交于點,連接,

1)求證:四邊形是菱形;

2)若,,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,斜坡AB的長為65米,坡度i124BCAC

(參考三角函數(shù):sin37°≈ ,cos37°≈ tan37°≈

1)求斜坡的高度BC

2)現(xiàn)計劃在斜坡AB的中點D處挖去部分坡體,修建一個平行于水平線CA的平臺DE和一條新的斜坡BE,若斜坡BE的坡角為37°,求平臺DE的長.

查看答案和解析>>

同步練習(xí)冊答案