如圖,在平面直角坐標系中,四邊形OABC四個頂點的坐標分別為O(0,0),A(﹣3,0),B(﹣4,2),C(﹣1,2).將四邊形OABC繞點O順時針旋轉(zhuǎn)90°后,點A、B、C分別落在點A′、B′、C′處.
(1)請你在所給的直角坐標系中畫出旋轉(zhuǎn)后的四邊形OA′B′C′;
(2)點C旋轉(zhuǎn)到點C′所經(jīng)過的弧的半徑是 ,點C經(jīng)過的路線長是 .
科目:初中數(shù)學 來源:2015-2016學年湖北黃岡中學九年級上9月考數(shù)學試卷(解析版) 題型:填空題
如圖,矩形ABCD中,AB=8,BC=6,邊CD在直線l上,將矩形ABCD沿直線l作無滑動翻滾,當點A第一次翻滾到點A1位置時,則點A經(jīng)過的路線長為 .
查看答案和解析>>
科目:初中數(shù)學 來源:2017屆貴州黔西南州牛場中學九年級上期中數(shù)學試卷(解析版) 題型:解答題
如圖,方格紙中每個小正方形的邊長都是1個單位長度,Rt△ABC的三個頂點A(﹣2,2),B(0,5),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請畫出△A1B1C的圖形.
(2)平移△ABC,使點A的對應(yīng)點A2坐標為(﹣2,﹣6),請畫出平移后對應(yīng)的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點旋轉(zhuǎn)可得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源:2017屆貴州黔西南州牛場中學九年級上期中數(shù)學試卷(解析版) 題型:選擇題
方程x2﹣2x=0的根是( )
A.x1=0,x2=﹣2 B.x1=0,x2=2 C.x=0 D.x=2
查看答案和解析>>
科目:初中數(shù)學 來源:2017屆北京五十六中九年級上期中數(shù)學試卷(解析版) 題型:解答題
閱讀下面材料:
如圖1,在平面直角坐標系xOy中,直線y1=ax+b與雙曲線y2=交于A(1,3)和B(﹣3,﹣1)兩點.
觀察圖象可知:
①當x=﹣3或1時,y1=y2;
②當﹣3<x<0或x>1時,y1>y2,即通過觀察函數(shù)的圖象,可以得到不等式ax+b>的解集.
有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學根據(jù)學習以上知識的經(jīng)驗,對求不等式x3+4x2﹣x﹣4>0的解集進行了探究.
下面是他的探究過程,請將(2)、(3)、(4)補充完整:
(1)將不等式按條件進行轉(zhuǎn)化:
當x=0時,原不等式不成立;
當x>0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1>;
當x<0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1<;
(2)構(gòu)造函數(shù),畫出圖象
設(shè)y3=x2+4x﹣1,y4=,在同一坐標系中分別畫出這兩個函數(shù)的圖象.
雙曲線y4=如圖2所示,請在此坐標系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(3)確定兩個函數(shù)圖象公共點的橫坐標
觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗證可知:滿足y3=y4的所有x的值為 ;
(4)借助圖象,寫出解集
結(jié)合(1)的討論結(jié)果,觀察兩個函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為 .
查看答案和解析>>
科目:初中數(shù)學 來源:2017屆北京五十六中九年級上期中數(shù)學試卷(解析版) 題型:選擇題
如圖為二次函數(shù)y=ax2+bx+c的圖象,下列各式中:①a>0,②b>0,③c=0,④c=1,⑤a+b+c=0.正確的只有( )
A.①④ B.②③④ C.③④⑤ D.①③⑤
查看答案和解析>>
科目:初中數(shù)學 來源:2017屆北京四十四中九年級上期中考試數(shù)學試卷(解析版) 題型:解答題
如圖,AB是⊙O的直徑,AD是弦,∠A=22.5°,延長AB到點C,使得∠ACD=45°.
(1)求證:CD是⊙O的切線.
(2)若AB=2,求OC的長.
查看答案和解析>>
科目:初中數(shù)學 來源:2016-2017學年福建長泰縣一中、華安縣一中初二11月考數(shù)學卷(解析版) 題型:選擇題
下列運算中, 正確的個數(shù)是( )
①;②;③;④
A.1個 B.2個 C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com