【題目】如圖,坡AB的坡度為12.4,坡面長26米,BCAC,現(xiàn)計劃在斜坡中點D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE(請將下面兩小題的結(jié)果都精確到0.1米,參考數(shù)據(jù):≈1.732).

1)若修建的斜坡BE的坡角(即∠BEF)恰為45°,則此時平臺DE的長為   米;

2)坡前有一建筑物GH,小明在D點測得建筑物頂部H的仰角為30°,在坡底A點測得建筑物頂部H的仰角為60°,點B、C、A、GH在同一平面內(nèi),點C、A、G在同一條水平直線上,問建筑物GH高為多少米?

【答案】17;(2)建筑物GH高約為17.9米.

【解析】

1)由勾股定理分別求出BC,AC的長,再證明DFABC的中位線,求出DF、BF的長,即可得出答案;

2)過點DDPAC,垂足為P,解直角三角形即可得到結(jié)論.

解:(1)∵坡AB的坡度為12.4,坡面長26米,

BC=x米,則AC=2.4x米,

,得

解得,x=10,或x=-10(舍去)

BC10,AC24,

∵修建的斜坡BE的坡角∠BEF45°,DAB的中點,

ADBD13,

DF//AC

DFABC的中位線,

BFCFEFBC5,DFAC12,

故:DEDFEF1257(米);

則平臺DE的長為7m,

故答案為:7

2)過點DDPAC,垂足為P

RtDPA中,DPCF5,

PAAC12,

在矩形DPGM中,MGDP12,DMPG12+AG,

RtDMH中,

HMDMtan30°×12+AG),

GHHM+MG×12+AG+5,

∵∠HAG60°

tan60°,

解得:AG

HGAG≈17.9(米),

答:建筑物GH高約為17.9米.

【點題】

此題主要考查了解直角三角形中坡角問題,根據(jù)圖象構(gòu)建直角三角形,進而利用銳角三角函數(shù)得出是解題關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線交x軸于A、B兩點,交y軸于C點,A點坐標為(﹣1,0),OC=2,OB=3,點D為拋物線的頂點.

(1)求拋物線的解析式;

(2)P為坐標平面內(nèi)一點,以B、C、D、P為頂點的四邊形是平行四邊形,求P點坐標;

(3)若拋物線上有且僅有三個點M1、M2、M3使得M1BC、M2BC、M3BC的面積均為定值S,求出定值SM1、M2、M3這三個點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】受新型冠狀病毒肺炎影響,學校開學時間延遲,為了保證學生停課不停學,某校開始實施網(wǎng)上教學,張老師統(tǒng)計了本班學生一周網(wǎng)上上課的時間(單位:分鐘)如下:200,180150,200250.關(guān)于這組數(shù)據(jù),下列說法正確的是( )

A.中位數(shù)是200B.眾數(shù)是150C.平均數(shù)是190D.方差為0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】春節(jié)前安徽黃山腳下的小村莊的集市上,人山人海,還有人在擺摸彩游戲,只見他手拿一個黑色的袋子內(nèi)裝大小、形狀、質(zhì)量完全相同的白球20只,且每一個球上都寫有號碼(1~20號)和1只紅球,規(guī)定:每次只摸一只球.摸前交1元錢且在1~20內(nèi)寫一個號碼,摸到紅球獎5元,摸到號碼數(shù)與你寫的號碼相同獎10元.

(1)你認為該游戲?qū)?/span>摸彩者有利嗎?說明你的理由.

(2)若一個摸彩者多次摸獎后,他平均每次將獲利或損失多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點在拋物線上,將拋物線在點右側(cè)的部分沿著直線翻折,翻折后的圖象與原拋物線剩余部分合稱為圖象

1)當時,

①在如圖的平面直角坐標系中畫出圖象

②直接寫出圖象對應函數(shù)的表達式;

③當時,圖象對應函數(shù)的最小值為的取值范圍.

2)當時,直接寫出圖象對應函數(shù)增大而減小時的取值范圍.

3)若圖象上有且只有三個點到直線的距離為,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykxb的圖象與反比例函數(shù)y的圖象相交于A(-1n),B(2,-1)兩點,與y軸相交于點C

1)求一次函數(shù)與反比例函數(shù)的表達式;

2)若點D與點C關(guān)于x軸對稱,求ABD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在近期“抗疫”期間,某藥店銷售兩種型號的口罩,已知銷售型和型的利潤為元,銷售型和型的利潤為元.

1)求每只型口罩和型口罩的銷售利潤;

2)該藥店計劃一次購進兩種型號的口罩共只,其中型口罩的進貨量不超過型口罩的倍,設購進型口罩只,這只口罩的銷售總利潤為元.

①求關(guān)于的函數(shù)關(guān)系式;

②該藥店購進型、型口罩各多少只,才能使銷售總利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線yx+cx軸交于點B40),與y軸交于點C,拋物線yx2+bx+c經(jīng)過點B,C,與x軸的另一個交點為點A

1)求拋物線的解析式;

2)點P是直線BC下方的拋物線上一動點,求四邊形ACPB的面積最大時點P的坐標;

3)若點M是拋物線上一點,請直接寫出使∠MBCABC的點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為,延長使,以為邊長在上方作正方形,延長,連接,,的中點,連接分別與交于點.則下列結(jié)論:①;②;③;④.其中正確的結(jié)論有(

A.①②B.①④C.②③D.③④

查看答案和解析>>

同步練習冊答案