如圖,已知AB是⊙O直徑,AC是⊙O弦,點(diǎn)D是的中點(diǎn),弦DE⊥AB,垂足為F,DE交AC于點(diǎn)G.
(1)若過(guò)點(diǎn)E作⊙O的切線ME,交AC的延長(zhǎng)線于點(diǎn)M(請(qǐng)補(bǔ)完整圖形),試問(wèn):ME=MG是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;
(2)在滿(mǎn)足第(2)問(wèn)的條件下,已知AF=3,F(xiàn)B=,求AG與GM的比.

【答案】分析:(1)連接OE,并延長(zhǎng)EO交⊙O于N,連接DN;由于ME是⊙O的切線,則∠MEG=∠N,而∠MGE=∠AGF,易證得∠AGF=∠B,即∠MGE=∠B,若證ME=MG,關(guān)鍵就是證得∠N=∠B;可從題干入手:點(diǎn)D是弧ABC的中點(diǎn),則弧AD=弧DBC=弧AE,所以弧DBE=弧AEC,即AC=DE,由此可證得∠N=∠B,即可得到∠MGE=∠MEG,根據(jù)等角對(duì)等邊即可得證.
(2)根據(jù)相交弦定理可求得DF、EF的長(zhǎng),即可得到DE、AC的長(zhǎng),易證得△AFG∽△ACB,根據(jù)所得比例線段即可求得AG、GC的長(zhǎng),再由(1)證得ME=MG,可用MG分別表示出MA、MC的長(zhǎng),進(jìn)而根據(jù)切割線定理求出MG的長(zhǎng),有了AG、MG的值,那么它們的比例關(guān)系就不難求出.
解答:解:(1)ME=MG成立,理由如下:
如圖,連接EO,并延長(zhǎng)交⊙O于N,連接BC;
∵AB是⊙O的直徑,且AB⊥DE,
,
∵點(diǎn)D是的中點(diǎn),

,
,即AC=DE,∠N=∠B;
∵M(jìn)E是⊙O的切線,
∴∠MEG=∠N=∠B,
又∵∠B=90°-∠GAF=∠AGF=∠MGE,
∴∠MEG=∠MGE,故ME=MG.

(2)由相交弦定理得:DF2=AF•FB=3×=4,即DF=2;
故DE=AC=2DF=4;
∵∠FAG=∠CAB,∠AFG=∠ACB=90°,
∴△AFG∽△ACB,
,即,
解得AG=,GC=AC-AG=
設(shè)ME=MG=x,則MC=x-,MA=x+
由切割線定理得:ME2=MC•MA,即x2=(x-)(x+),
解得MG=x=;
∴AG:MG==10:3,即AG與GM的比為
點(diǎn)評(píng):此題是一道圓的綜合題,涉及到:切線的性質(zhì)、圓周角定理、相交弦定理、弦切角定理、切割線定理等重要知識(shí)點(diǎn),綜合性強(qiáng),難度較大,能夠發(fā)現(xiàn)AC、DE的等量關(guān)系是解答此題的關(guān)鍵所在.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長(zhǎng)線上一點(diǎn),DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說(shuō)明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn),∠BAC的平分線交⊙O于點(diǎn)D,交⊙O的切線BE于點(diǎn)E,過(guò)點(diǎn)D作DF⊥AC,交AC的延長(zhǎng)線于點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,點(diǎn)C是
EB
的中點(diǎn),則下列結(jié)論不成立的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點(diǎn),且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點(diǎn)C,作CD⊥AD,垂足為點(diǎn)D,直線CD與AB的延長(zhǎng)線交于點(diǎn)E.
(1)求證:直線CD為圓O的切線.
(2)當(dāng)AB=2BE,DE=2
3
時(shí),求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案