【題目】(1)計算

(1﹣)×(1+)=   ,1﹣(2=   ; 有(1﹣)×(1+   1﹣(2 (用“=”“<”“>”填空).

(1﹣)×(1+)=   ,1﹣(2=   ; 有(1﹣)×(1+   1﹣(2 (用“=”“<”“>”填空).

③猜測(1﹣)(1+)與1﹣(2 有關(guān)系:(1﹣)(1+   1﹣(2.(用“=”“<”“>”填空)

(2)計算:[1﹣(2]×[1﹣(2]×[1﹣(2]×…×[1﹣(2]

【答案】(1)、=;、、=;=;(2)

【解析】

(1)①根據(jù)有理數(shù)的運(yùn)算法則依次計算后即可解答;②根據(jù)有理數(shù)的運(yùn)算法則依次計算后即可解答;③類比①②的計算結(jié)果即可解答;(2)利用(1)獲得的方法,把把中括號內(nèi)的每一個式子分解后再計算即可求解.

解:(1)(1﹣)×(1+)=,1﹣(2=;有(1﹣)×(1+)=1﹣(2

(1﹣)×(1+)=,1﹣(2=;有(1﹣)×(1+)=1﹣(2

③猜測(1﹣)(1+)與1﹣(2 有關(guān)系:(1﹣)(1+)=1﹣(2

故答案為:①、=;、、=;=

(2)原式=(1﹣)×(1+)×(1﹣)×(1+)×(1﹣)×(1+)…(1﹣)×(1+

=

=×

=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,CE平分∠ACB,CF平分∠ACD,EF//BCACM,CM=5,CE2+CF2等于( )

A. 100 B. 75 C. 120 D. 125

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,DOE=90°.

(1)請你數(shù)一數(shù),圖中有多少個小于平角的角;

(2)求出∠BOD的度數(shù);

(3)請通過計算說明OE是否平分∠BOC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長4m的樓梯AB的傾斜角∠ABD為60°,為了改善樓梯的安全性能,準(zhǔn)備重新建造樓梯,使其傾斜角∠ACD為45°,則調(diào)整后的樓梯AC的長為( 。

A.2 m
B.2 m
C.(2 ﹣2)m
D.(2 ﹣2)m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=3,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式:(a×b)2=a2×b2、(a×b)3=a3×b3、(a×b)4=a4×b4

(1)用具體數(shù)值驗證上述等式是否成立(寫出其中一個驗證過程)

(2)通過上述驗證,猜一猜:(a×b)100=   ,歸納得出:(a×b)n=   ;

(3)請應(yīng)用上述性質(zhì)計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點,拋物線y=ax2﹣2ax+a+4(a<0)經(jīng)過點B.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)已知點M是拋物線上的一個動點,并且點M在第一象限內(nèi),連接AM、BM,設(shè)點M的橫坐標(biāo)為m,△ABM的面積為S,求S與m的函數(shù)表達(dá)式,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取得最大值時,動點M相應(yīng)的位置記為點M′.
①寫出點M′的坐標(biāo);
②將直線l繞點A按順時針方向旋轉(zhuǎn)得到直線l′,當(dāng)直線l′與直線AM′重合時停止旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線l′與線段BM′交于點C,設(shè)點B、M′到直線l′的距離分別為d1、d2 , 當(dāng)d1+d2最大時,求直線l′旋轉(zhuǎn)的角度(即∠BAC的度數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖數(shù)軸上A、B、C三點對應(yīng)的數(shù)分別是a、b、7,滿足OA=3,BC=1,P為數(shù)軸上一動點,點PA出發(fā),沿數(shù)軸正方向以每秒1.5個單位長度的速度勻速運(yùn)動,點Q從點C出發(fā)在射線CA上向點A勻速運(yùn)動,且P、Q兩點同時出發(fā).

(1)a、b的值

(2)當(dāng)P運(yùn)動到線段OB的中點時,點Q運(yùn)動的位置恰好是線段AB靠近點B的三等分點,求點Q的運(yùn)動速度

(3)當(dāng)P、Q兩點間的距離是6個單位長度時,求OP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABCD,點P為定點,E、F分別是ABCD上的動點.

(1)求證:∠P=∠BEP+∠PFD;

(2)若點MCD上一點,如圖2,∠FMN=∠BEP,且MNPFN.試說明∠EPF與∠PNM的數(shù)量關(guān)系,并證明你的結(jié)論;

(3)移動E、F使得∠EPF=90°,如圖3,作∠PEG=∠BEP,求∠AEG與∠PFD度數(shù)的比值.

查看答案和解析>>

同步練習(xí)冊答案