【題目】如圖,AB是⊙O的直徑,ED切⊙O于點C,AD交⊙O于點F,AC平分∠BAD,連接BF.

(1)求證:ADED;

(2)若CD=4,AF=2,求⊙O的半徑.

【答案】(1)證明見解析;(2)O的半徑為

【解析】(1)連接OC,如圖,先證明OCAD,然后利用切線的性質(zhì)得OCDE,從而得到ADED;

(2)OCBFH,如圖,利用圓周角定理得到∠AFB=90°,再證明四邊形CDFH為矩形得到FH=CD=4,CHF=90°,利用垂徑定理得到BH=FH=4,然后利用勾股定理計算出AB,從而得到⊙O的半徑.

(1)證明:連接OC,如圖,

AC平分∠BAD,

∴∠1=2,

OA=OC,

∴∠1=3,

∴∠2=3,

OCAD,

ED切⊙O于點C,

OCDE,

ADED;

(2)解:OCBFH,如圖,

AB為直徑,

∴∠AFB=90°,

易得四邊形CDFH為矩形,

FH=CD=4,CHF=90°,

OHBF,

BH=FH=4,

BF=8,

RtABF中,AB=

∴⊙O的半徑為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在正方形ABCD中、點EBC邊上一點,FAB延長線上一點,且BEBF,連接AE、EFCF

1)若∠BAE18°,求∠EFC的度數(shù);

2)求證:AECF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了推進球類運動的發(fā)展,某校組織校內(nèi)球類運動會,分籃球、足球、排球、羽毛球、乒乓球五項,要求每位學生必須參加一項并且只能參加一項,某班有一名學生根據(jù)自己了解的班內(nèi)情況繪制了如圖所示的完整統(tǒng)計表和扇形統(tǒng)計圖.

請根據(jù)圖表中提供的信息,解答下列問題:

1)圖表中 , ;

2)該班參加乒乓球活動的4位同學中,有3位男同學(分別用,表示)和1位女同學(用表示),現(xiàn)準備從中選出兩名同學參加比賽,用樹狀圖或列表法求出恰好選出一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD是⊙O的切線,點C在直徑AB的延長線上.

(1)求證:∠CAD=BDC;

(2)若BD=AD,AC=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的平面直角坐標系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1△OA1B1關(guān)于點B1成中心對稱,再作△B2A3B3△B2A2B1關(guān)于點B2成中心對稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點A2n+1的坐標是(

A. (4n﹣1,B. (2n﹣1,C. (4n+1,D. (2n+1,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是  

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一圓弧形橋拱的圓心為,拱橋的水面跨度米,橋拱到水面的最大高度米.求:

橋拱的半徑;

現(xiàn)水面上漲后水面跨度為米,求水面上漲的高度為________米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠BAC60°,AB6,將ABC繞點A逆時針方向旋轉(zhuǎn)60°得到ABC,求線段BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:拋物線C1y=﹣(x+m2+m2m0),拋物線C2y=(xn2+n2n0),稱拋物線C1,C2互為派對拋物線,例如拋物線C1y=﹣(x+12+1與拋物線C2y=(x2+2是派對拋物線,已知派對拋物線C1C2的頂點分別為A,B,拋物線C1的對稱軸交拋物線C2C,拋物線C2的對稱軸交拋物線C1D

1)已知拋物線①y=﹣x22x,②y=(x32+3,③y=(x2+2④yx2x+,則拋物線①②③④中互為派對拋物線的是   (請在橫線上填寫拋物線的數(shù)字序號);

2)如圖1,當m1,n2時,證明ACBD;

3)如圖2,連接AB,CD交于點F,延長BAx軸的負半軸于點E,記BDx軸于G,CDx軸于點H,∠BEO=∠BDC

求證:四邊形ACBD是菱形;

若已知拋物線C2y=(x22+4,請求出m的值.

查看答案和解析>>

同步練習冊答案