精英家教網 > 初中數學 > 題目詳情
已知一次函數y1=ax+b的圖象與反比例函數y2=的圖象相交于A、B兩點,坐標分別為(-2,4)、(4,-2).
(1)求兩個函數的解析式;
(2)結合圖象寫出y1<y2時,x的取值范圍;
(3)求△AOB的面積;
(4)是否存在一點P,使以點A﹑B﹑O﹑P為頂點的四邊形為菱形?若存在,求出頂點P的坐標;若不存在,請說明理由.

【答案】分析:(1)直接利用待定系數法可分別求得兩個函數的解析式;
(2)利用(1)中的解析式聯立方程組,即可求得交點坐標,結合圖形可寫出x的取值范圍;
(3)把△AOB的面積分為兩部分,即S△AOB=S△AOC+S△BOC;
(4)利用菱形的性質,根據線段的中點橫坐標是兩個端點橫坐標的和的一半,縱坐標也是兩個端點縱坐標和的一半,即可求解.
解答:解:(1)分別把點A(-2,4),點B(4,-2)代入解析式中,得
k=-8,即雙曲線解析式為y=-

解得
∴直線解析式為y=-x+2;

(2)當-x+2=-時,
整理,得
x2-2x-8=0
解得x1=-2,x2=4
即點A(-2,4),點B(4,-2)
當y1<y2時,-2<x<0或x>4.

(3)當x=0時,y=-x+2=2,即
OC=2
∴S△AOB=S△AOC+S△BOC=22+24=6.

(4)存在.
若四邊形OAPB是菱形,則AB,OP互相垂直平分,即點M既是AB的中點,又是OP的中點.
∵點A是(-2,4),點B是(4,-2)
∴點M的坐標是(1,1)
∴點P的坐標是(2,2).
點評:此題主要考查反比例函數的性質和三角形以及菱形相結合的綜合性知識.通過解方程組求出交點坐標,知道線段的中點坐標與兩個端點之間的關系是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

22、已知一次函數y1=2x和二次函數y2=2x2-2x+2;
(1)證明對任意實數x,都有y1≤y2
(2)求二次函數y3,其圖象過點(-1,2),且對任意實數x,都有y1≤y3≤y2

查看答案和解析>>

科目:初中數學 來源: 題型:

已知一次函數y1=ax+b的圖象與反比例函數y2=
kx
的圖象相交于A、B兩點,坐標分別為(-精英家教網2,4)、(4,-2).
(1)求兩個函數的解析式;
(2)結合圖象寫出y1<y2時,x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•德陽)已知一次函數y1=x+m的圖象與反比例函數y2=
6x
的圖象交于A、B兩點.已知當x>1時,y1>y2;當0<x<1時,y1<y2
(1)求一次函數的解析式;
(2)已知雙曲線在第一象限上有一點C到y軸的距離為3,求△ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知一次函數y1=ax+b的圖象與反比例函數y2=
kx
的圖象相交于A、B兩點,坐標分別為(-2,4)、(4,-2).
(1)求兩個函數的解析式;
(2)結合圖象寫出y1<y2時,x的取值范圍;
(3)求△AOB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,已知一次函數y1=kx+b的圖象經過A(1,2)、B(-1,0)兩點,y2=mx+n的圖象經過A、C(3,0)兩點,則不等式組0<kx+b<mx+n的解集是( 。

查看答案和解析>>

同步練習冊答案