如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個三角形重疊部分的面積為1cm2,則它移動的距離AA′等于( )

A.0.5cm
B.1cm
C.1.5cm
D.2cm
【答案】分析:根據(jù)平移的性質,結合陰影部分是平行四邊形,△AA′H與△HCB′都是等腰直角三角形,則若設AA′=x,則陰影部分的底長為x,高A′D=2-x,根據(jù)平行四邊形的面積公式即可列出方程求解.
解答:解:設AC交A′B′于H,
∵∠A=45°,∠D=90°
∴△A′HA是等腰直角三角形
設AA′=x,則陰影部分的底長為x,高A′D=2-x
∴x•(2-x)=1
∴x=1
即AA′=1cm.
故選B.
點評:解決本題關鍵是抓住平移后圖形的特點,利用方程方法解題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,將邊長為2cm的正方形的四邊沿直線l向右滾動(不滑動),當正方形滾動一周時,正方形的頂點A所經過的路線的長是
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個三角形重疊部分的面積是1cm2,則它移動的距離AA′等于
1
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,將邊長為2cm的兩個正方形紙片完全重合,按住其中一個不動,另一個繞點B順時針旋轉一個角度,若使重疊部分的面積為
4
3
3
cm2,則這個旋轉角度為(  )
A、30°B、35°
C、45°D、60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•遵義)如圖,將邊長為
2
cm的正方形ABCD沿直線l向右翻動(不滑動),當正方形連續(xù)翻動6次后,正方形的中心O經過的路線長是
cm.(結果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將邊長為2cm的兩個互相重合的正方形紙片 按住其中一個不動,另一個紙點B順時針旋轉一個角度,若使重疊部分的面積為
4
3
3
cm2,則這個旋轉角度為
30
30
度.

查看答案和解析>>

同步練習冊答案