如圖,五邊形ABCDE為一塊土地的示意圖.四邊形AFDE為矩形,AE=130米,ED=100米,BC截∠F交AF、FD分別于點B、C,且BF=FC=10米.
(1)現(xiàn)要在此土地上劃出一塊矩形土地NPME作為安置區(qū),且點P在線段BC上,若設PM的長為x米,矩形NPME的面積為y平方米,求y與x的函數(shù)關系式,并求當x為何值時,安置區(qū)的面積y最大,最大面積為多少?
(2)因三峽庫區(qū)移民的需要,現(xiàn)要在此最大面積的安置區(qū)內(nèi)安置30戶移民農(nóng)戶,每戶建房占地100平方米,政府給予每戶4萬元補助,安置區(qū)內(nèi)除建房外的其余部分每平方米政府投入100元作為基礎建設費,在五邊形ABCDE這塊土地上,除安置區(qū)外的部分每平方米政府投入200元作為設施施工費.為減輕政府的財政壓力,決定鼓勵一批非安置戶到此安置區(qū)內(nèi)建房,每戶建房占地120平方米,但每戶非安置戶應向政府交納土地使用費3萬元.為保護環(huán)境,建房總面積不得超過安置區(qū)面積的50%.若除非安置戶交納的土地使用費外,政府另外投入資金150萬元,請問能否將這30戶移民農(nóng)戶全部安置?并說明理由.
(1)延長MP交AF于點H,則△BHP為等腰直角三角形.
BH=PH=130-x
DM=HF=10-BH=10-(130-x)=x-120
則y=PM•EM=x•[100-(x-120)]=-x2+220x
由0≤PH≤10
得120≤x≤130因為拋物線y=-x2+220x的對稱軸為直線x=110,開口向下.
所以,在120≤x≤130內(nèi),
當x=120時,y=-x2+220x取得最大值.
其最大值為y=12000(㎡)

(2)設有a戶非安置戶到安置區(qū)內(nèi)建房,政府才能將30戶移民農(nóng)戶全部安置.
由題意,得
30×100+120a≤12000×50%
30×4+(12000-30×100-120a)×0.01+
90+100
2
×10×0.02≤150+3a
解得18
17
21
≤a≤25
因為a為整數(shù).
所以,到安置區(qū)建房的非安置戶至少有19戶且最多有25戶時,政府才能將30戶移民農(nóng)戶全部安置;否則,政府就不能將30戶移民農(nóng)戶全部安置.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

函數(shù)y=-x2+ax+b的圖象如圖所示.
(1)求a,b的值;
(2)設點P是圖象與x軸的另一個交點,求點P的坐標;
(3)求圖象的頂點坐標及最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)的圖象以A(-1,4)為頂點,且過點B(2,-5)
①求該函數(shù)的關系式;
②求該函數(shù)圖象與坐標軸的交點坐標;
③將該函數(shù)圖象向右平移,當圖象經(jīng)過原點時,A、B兩點隨圖象移至A′、B′,求△OA′B′的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

根據(jù)條件求二次函數(shù)的解析式:
(1)拋物線過(-1,-22),(0,-8),(2,8)三點;
(2)有一個拋物線形拱橋,其最大高度為16m,跨度為40m,現(xiàn)把它的示意圖放在平面直角坐標系中如圖,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

將二次函數(shù)y=2x2-8x-5的圖象沿它的對稱軸所在直線向上平移,得到一條新的拋物線,這條新的拋物線與直線y=kx+1有一個交點為(3,4).
求:(1)新拋物線的解析式及后的值;
(2)新拋物線與y=kx+1的另一個交點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某玩具廠授權生產(chǎn)工藝品福娃,每日最高產(chǎn)量為30只,且每日生產(chǎn)的產(chǎn)品全部出售.已知生產(chǎn)x只福娃的成本為R(元),每只售價P(元),且R,P與x的表達式分別為R=50+3x,P=170-2x.當日產(chǎn)量為多少時,可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

用長6米的鋁合金條制成如圖所示的矩形窗框,則這個窗戶的最大透光面積為______米2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某玩具廠計劃生產(chǎn)一種玩具熊貓,每日最高產(chǎn)量為40只,且每日產(chǎn)出的產(chǎn)品全部售出.已知生產(chǎn)x只玩具熊貓的成本為R(元),售價每只為P(元),且R、P與x的關系式分別為R=500+30x,P=170-2x.
(1)當日產(chǎn)量為多少時,每日獲得的利潤為1750元?
(2)當日產(chǎn)量為多少時,可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx-
3
交x軸于A(-3,0)、B(1,0)兩點,交y軸于點C,點D在拋物線上,且CDAB,對稱軸直線l交x軸于點M,連結CM,將∠CMB繞點M旋轉(zhuǎn),旋轉(zhuǎn)后的兩邊分別交直線BC、直線CD于點E、F.
(1)求拋物線的解析式;
(2)當點E為BC中點時,射線MF與拋物線的交點坐標是______;
(3)若ME=
13
CF,求點E的坐標.

查看答案和解析>>

同步練習冊答案