【題目】某中學(xué)就戲曲進(jìn)校園活動(dòng)的喜愛情況進(jìn)行了隨機(jī)調(diào)查,對(duì)收集的信息進(jìn)行了統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問題:(圖中表示很喜歡,表示喜歡表示一般,表示不喜歡

1)被調(diào)查的總?cè)藬?shù)是_________,扇形統(tǒng)計(jì)圖中部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為_________;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)在抽取的5人中,剛好有甲、乙、丙3個(gè)女生和丁、戊2個(gè)男生,從中隨機(jī)抽取兩個(gè)同學(xué)擔(dān)任兩角色,用畫樹狀圖或列表法求出抽到的兩個(gè)學(xué)生性別不相同的概率.

【答案】150,;(2)見解析;(3

【解析】

1)由A類別人數(shù)及其所占百分比可得總?cè)藬?shù),用360°乘以C部分人數(shù)所占比例可得;

2)總?cè)藬?shù)減去其他類別人數(shù)求得B的人數(shù),據(jù)此即可補(bǔ)全條形圖;

3)用樹狀圖或列表法即可求出抽到性別相同的兩個(gè)學(xué)生的概率.

1)被調(diào)查的總?cè)藬?shù)為5÷10%=50人,

扇形統(tǒng)計(jì)圖中C部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為360°×=144°.

2)補(bǔ)全條形圖如下:

3)畫樹狀圖如下:

由上可知,抽到的兩個(gè)學(xué)生性別不相同的概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2bxca,bc為常數(shù),a0)經(jīng)過點(diǎn)(02),且關(guān)于直線x=﹣1對(duì)稱,(x1,0)是拋物線與x軸的一個(gè)交點(diǎn),有下列結(jié)論,其中結(jié)論錯(cuò)誤的是( )

A.方程ax2bxc2的一個(gè)根是x=﹣2

B.x12,則拋物線與x軸的另一個(gè)交點(diǎn)為(﹣4,0)

C.m4時(shí),方程ax2bxcm有兩個(gè)相等的實(shí)數(shù)根,則a=﹣2

D.x0時(shí),2y3,則a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,平分于點(diǎn)上一點(diǎn),經(jīng)過兩點(diǎn)的于點(diǎn),連接,作的平分線于點(diǎn),連接

1)求證:的切線;

2)若,,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=-x2bxcx軸交于點(diǎn)AB,與y軸交于點(diǎn)C,直線yx4經(jīng)過A,C兩點(diǎn).

(1)求拋物線的表達(dá)式;

(2)AC上方的拋物線上有一動(dòng)點(diǎn)P

①如圖1,當(dāng)點(diǎn)P運(yùn)動(dòng)到某位置時(shí),以AP,AO為鄰邊的平行四邊形第四個(gè)頂點(diǎn)恰好也在拋物線上,求出此時(shí)點(diǎn)P的坐標(biāo);

②如圖2,過點(diǎn)OP的直線ykxAC于點(diǎn)E,若PEOE38,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.有一寬度為1,長度足夠長的矩形(陰影部分)沿軸方向平移,與軸平行的一組對(duì)邊交拋物線于點(diǎn)和點(diǎn),交直線于點(diǎn)和點(diǎn),交軸于點(diǎn)和點(diǎn).

1)求拋物線的解析式及點(diǎn)的坐標(biāo);

2)當(dāng)點(diǎn)都在線段上時(shí),連接,如果,求點(diǎn)的坐標(biāo);

3)在矩形的平移過程中,是否存在以點(diǎn),,為頂點(diǎn)的四邊形是平行四邊形,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°AB=2,AC=3DBC的中點(diǎn),動(dòng)點(diǎn)E,F分別在AB,AC上,分別過點(diǎn)EGADFH,交BC于點(diǎn)G、H,若EFBC,則EF+EG+FH的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:(1)如圖①,在RtABC中,ABAC,DBC邊上一點(diǎn)(不與點(diǎn)BC重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,則線段BCDC,EC之間滿足的等量關(guān)系式為   

探索:(2)如圖②,在RtABCRtADE中,ABAC,ADAE,將△ADE繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)D落在BC邊上,試探索線段AD,BDCD之間滿足的等量關(guān)系,并證明你的結(jié)論;

應(yīng)用:(3)如圖③,在四邊形ABCD中,∠ABC=∠ACB=∠ADC45°.若BD9,CD3,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校準(zhǔn)備開設(shè)特色活動(dòng)課,各科目的計(jì)劃招生人數(shù)和報(bào)名人數(shù),列前三位的如下表所示:

科目

小制作

足球

英語口語

計(jì)劃人數(shù)

100

90

60

科目

小制作

英語口語

中國象棋

報(bào)名人數(shù)

280

250

200

若計(jì)劃招生人數(shù)和報(bào)名人數(shù)的比值越大,表示學(xué)校開設(shè)該科目相對(duì)學(xué)生需要的滿足指數(shù)就越高.那么根據(jù)以上數(shù)據(jù),滿足指數(shù)最高的科目是( 。

A. 足球B. 小制作C. 英語口語D. 中國象棋

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中(如圖),已知拋物線經(jīng)過原點(diǎn),與軸的另一個(gè)交點(diǎn)為,頂點(diǎn)為.

1)求這條拋物線表達(dá)式;

2)將該拋物線向右平移,平移后的新拋物線頂點(diǎn)為,它與軸交點(diǎn)為,聯(lián)結(jié)、,設(shè)點(diǎn)的縱坐標(biāo)為,用含的代數(shù)式表示的正切值;

3)聯(lián)結(jié),在(2)的條件下,射線平分,求點(diǎn)到直線的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案