(2005•鎮(zhèn)江)若代數(shù)式的值是零,則x=    ;若代數(shù)式(x-2)(x+1)的值是零,則x=   
【答案】分析:分式的值為0的條件是:(1)分子=0;(2)分母≠0.兩個(gè)條件需同時(shí)具備,缺一不可.據(jù)此可以解答第一個(gè)題目.
代數(shù)式(x-2)(x+1)的值是零,即x-2與x+1的積是0,因而至少其中一個(gè)是0.據(jù)此可以解答第二個(gè)題目.
解答:解:由題意,可得x-2=0且x+1≠0,
解得x=2;
∵(x-2)(x+1)=0,
∴x-2=0或x+1=0,
∴x=2或-1.
故答案為2或-1.
點(diǎn)評(píng):由于該類(lèi)型的題易忽略分母不為0這個(gè)條件,所以常以這個(gè)知識(shí)點(diǎn)來(lái)命題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•鎮(zhèn)江)平面直角坐標(biāo)系內(nèi)有兩條直線l1、l2,直線l1的解析式為y=-x+1,如果將坐標(biāo)紙折疊,使直線l1與l2重合,此時(shí)點(diǎn)(-2,0)與點(diǎn)(0,2)也重合.
(1)求直線l2的解析式;
(2)設(shè)直線l1與l2相交于點(diǎn)M,問(wèn):是否存在這樣的直線l:y=x+t,使得如果將坐標(biāo)紙沿直線l折疊,點(diǎn)M恰好落在x軸上若存在,求出直線l的解析式;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)直線l2與x軸的交點(diǎn)為A,與y軸的交點(diǎn)為B,以點(diǎn)C(0,)為圓心,CA的長(zhǎng)為半徑作圓,過(guò)點(diǎn)B任作一條直線(不與y軸重合),與⊙C相交于D、E兩點(diǎn)(點(diǎn)D在點(diǎn)E的下方)
①在如圖所示的直角坐標(biāo)系中畫(huà)出圖形;
②設(shè)OD=x,△BOD的面積為S1,△BEC的面積為S2,,求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年江蘇省鎮(zhèn)江市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•鎮(zhèn)江)平面直角坐標(biāo)系內(nèi)有兩條直線l1、l2,直線l1的解析式為y=-x+1,如果將坐標(biāo)紙折疊,使直線l1與l2重合,此時(shí)點(diǎn)(-2,0)與點(diǎn)(0,2)也重合.
(1)求直線l2的解析式;
(2)設(shè)直線l1與l2相交于點(diǎn)M,問(wèn):是否存在這樣的直線l:y=x+t,使得如果將坐標(biāo)紙沿直線l折疊,點(diǎn)M恰好落在x軸上若存在,求出直線l的解析式;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)直線l2與x軸的交點(diǎn)為A,與y軸的交點(diǎn)為B,以點(diǎn)C(0,)為圓心,CA的長(zhǎng)為半徑作圓,過(guò)點(diǎn)B任作一條直線(不與y軸重合),與⊙C相交于D、E兩點(diǎn)(點(diǎn)D在點(diǎn)E的下方)
①在如圖所示的直角坐標(biāo)系中畫(huà)出圖形;
②設(shè)OD=x,△BOD的面積為S1,△BEC的面積為S2,,求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《圓》(01)(解析版) 題型:選擇題

(2005•鎮(zhèn)江)如圖,AB是半圓的直徑,O是圓心,C是半圓外一點(diǎn),CA、CB分別交半圓于點(diǎn)D,E若△CDE的面積與四邊形ABED的面積相等,則∠C等于( )

A.30°
B.40°
C.45°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《分式》(02)(解析版) 題型:填空題

(2005•鎮(zhèn)江)若代數(shù)式的值是零,則x=    ;若代數(shù)式(x-2)(x+1)的值是零,則x=   

查看答案和解析>>

同步練習(xí)冊(cè)答案