如圖,AB為⊙O的直徑,C是⊙O上的點,F(xiàn)是AC延長線上一點,連接BF,過C作⊙O的切線CE交BF于E,且CE⊥BF.
(1)求證:AC=CF;
(2)若CF=2數(shù)學公式,D在直徑AB上,AC=AD,∠CAB=30°,CD延長線交⊙O于M,求CM的長.

(1)證明:連接OC,
∵CE是⊙O的切線,
∴OC⊥CE,
∵CE⊥BF,
∴OC∥BF,
∵OA=OB,
∴AC=CF;

(2)解:連接BC,作直徑CN,連接MN,
∵AB是直徑,
∴∠ACB=90°,
∵AC=CF=2,∠CAB=30°,
∴AB==4,
即CD=4,
∵OA=OC,
∴∠ACO=∠CAB=30°,
∵∠CAD=30°,AC=AD,
∴∠ACD=∠ADC=75°,
∴∠NCM=75°-30°=45°,
∵CN是直徑,
∴∠CMN=90°,
在Rt△CMN中,cos45°=
CM=2
分析:(1)連接OC,根據(jù)切線的性質得出OC⊥CE,推出OC∥BF,根據(jù)平行線分線段成比例定理推出即可;
(2)連接BC,作直徑CN,連接MN,求出∠ACD=30°,∠ACD=75°,求出∠MCN=45°,求出直徑AB,得出CD長,在Rt△CMN中得出cos45°=,求出即可.
點評:本題考查了切線性質,平行線的判定,平行線分線段成比例定理,解直角三角形,圓周角定理,等腰三角形的性質的應用,主要考查學生綜合運用性質進行推理的能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為( 。
A、1cmB、2cmC、3cmD、4cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在水塔O的東北方向32m處有一抽水站A,在水塔的東南方向24m處有一建筑工地B,在AB間建一條直水管,則水管的長為
40m
40m

查看答案和解析>>

科目:初中數(shù)學 來源:江蘇省張家港市2012年中考網(wǎng)上閱卷適應性考試數(shù)學試題 題型:013

如圖,AB為⊙O的直甲徑,PD切⊙O于點C,交AB的延長線于D,且CO=CD,則∠PCA=

[  ]

A.60°

B.65°

C.67.

D.75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為


  1. A.
    1cm
  2. B.
    2cm
  3. C.
    3cm
  4. D.
    4cm

查看答案和解析>>

科目:初中數(shù)學 來源:2008年福建省福州一中高中招生(面向福州以外)綜合素質測試數(shù)學試卷(解析版) 題型:選擇題

如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為( )

A.1cm
B.2cm
C.3cm
D.4cm

查看答案和解析>>

同步練習冊答案