精英家教網 > 初中數學 > 題目詳情
已知:如圖,AD⊥BC,EF⊥BC,∠1=∠2.求證:AB∥GF.
見解析解析:
∵AD⊥BC,EF⊥BC.(已知)
∴∠ADB=∠EFC=90°(垂直的定義)
∴∠B=90°-∠1;(直角三角形兩銳角互余)
∠GFC=90°-∠2.(互余的定義)
∵∠1=∠2      (已知)
∴∠B=∠GFC   。ǖ冉堑挠嘟窍嗟龋
∴AB∥GF.    。ㄍ唤窍嗟,兩直線平行)
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

27、已知:如圖,AD∥BC,ED∥BF,且AF=CE.
求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

25、已知,如圖,AD∥BC,∠1=∠2,∠A=120°,且BD⊥CD,求∠C的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,AD=BC,AC=BD.試判斷OD、OC的數量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知,如圖,AD∥BC,∠A=90°,AD=BE,∠EDC=∠ECD,請你說明下列結論成立的理由:(1)△AED≌△BCE,(2)AB=AD+BC.

查看答案和解析>>

科目:初中數學 來源: 題型:

根據題意填空:
已知,如圖,AD∥BC,∠BAD=∠BCD,求證:AB∥CD.
證明:∵AD∥BC(已知)
∴∠1=
∠2(兩直線平行,內錯角相等),
∠2(兩直線平行,內錯角相等),

又∵∠BAD=∠BCD ( 已知 )
∴∠BAD-∠1=∠BCD-∠2
(等式的性質)
(等式的性質)

即:∠3=∠4
AB∥CD(內錯角相等,兩直線平行)
AB∥CD(內錯角相等,兩直線平行)

查看答案和解析>>

同步練習冊答案