
證明:如圖,連接DE 在△ABC中,
∵∠A=100°,
∴∠ABC=∠C=

(180°-∠A)=40°
又∵I是內(nèi)心,
∴BI平分∠ABC,
∴∠ABD=∠DBC=

∠ABC=20°
∴∠ADB=180°-∠A-∠ABD=60°
在⊙O中,∠A+∠BED=180°,
∴∠BED=180°-∠A=80°
∴∠BDE=180°-∠DBC-∠BED=80°,
∴∠BED=∠BDE,
∴BD=BE
又∵∠C=40°∠BED=80°,
∴∠CDE=∠BED-∠C=40°
∴∠C=∠CDE,
∴CE=DE
又∵∠ABD=∠DBC,
∴

=

,
∴AD=DE,
∴AD=CE
∴BC=BE+CE=BD+AD.
分析:連接DE 在△ABC中根據(jù)∠A=100°可求出∠ABC的度數(shù),I是內(nèi)心,根據(jù)BI平分∠ABC,可知∠ABD=∠DBC=

∠ABC=20°故可得出∠ADB的度數(shù),在⊙O中由內(nèi)接四邊形的性質(zhì)可知∠A+∠BED=180°,故可得出∠BED的度數(shù),進而可得出∠BDE的度數(shù),即∠BED=∠BDE,BD=BE,由三角形內(nèi)角和定理可求出∠CDE的度數(shù),
進而得出CE=DE,由∠ABD=∠DBC可知

=

,故AD=DE=CE,進而可得出結(jié)論.
點評:本題考查的是三角形的內(nèi)切圓與內(nèi)心.根據(jù)題意作出輔助線,構(gòu)造出圓內(nèi)接四邊形是解答此題的關(guān)鍵.