如圖,長(zhǎng)方形紙片ABCD,沿折痕AE折疊邊AD,使點(diǎn)D落在BC邊上的點(diǎn)F處,已知AB=8,S△ABF=24,則EC=
3
3
分析:根據(jù)AB=8,S△ABF=24,得BF=6;根據(jù)勾股定理,得AF=10,則AD=BC=10,則CF=4;設(shè)EC=x,則EF=DE=8-x,根據(jù)勾股定理即可求得x的值.
解答:解:∵AB=8,S△ABF=24,
∴BF=6.
根據(jù)勾股定理,得
AF=10.
∴AD=BC=10,
∴CF=4.
設(shè)EC=x,則EF=DE=8-x,根據(jù)勾股定理,得
x2+16=(8-x)2,
解得
x=3.
即EC=3.
點(diǎn)評(píng):此題綜合運(yùn)用了矩形的性質(zhì)、折疊的性質(zhì)、勾股定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,長(zhǎng)方形紙片ABCD中,AD=9,AB=3,將其折疊,使其點(diǎn)D與點(diǎn)B重合,點(diǎn)C至點(diǎn)C′,折痕為EF.求△BEF的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,長(zhǎng)方形紙片ABCD,沿折痕AE折疊邊AD,使點(diǎn)D落在BC邊上的點(diǎn)F處,已知AB=8,S△ABF=24,求EC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)一模)如圖,長(zhǎng)方形紙片ABCD中,AB=8cm,AD=6cm,按下列步驟進(jìn)行裁剪和拼圖:

第一步:如圖①,在線段AD上任意取一點(diǎn)E,沿EB,EC剪下一個(gè)三角形紙片EBC(余下部分不再使用);
第二步:如圖②,沿三角形EBC的中位線GH將紙片剪成兩部分,并在線段GH上任意取一點(diǎn)M,線段BC上任意取一點(diǎn)N,沿MN將梯形紙片GBCH剪成兩部分;
第三步:如圖③,將MN左側(cè)紙片繞G點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)180°,使線段GB與GE重合,將MN右側(cè)紙片繞H點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)180°,使線段HC與HE重合,拼成一個(gè)與三角形紙片EBC面積相等的四邊形紙片.(注:裁剪和拼圖過(guò)程均無(wú)縫且不重疊)
則拼成的這個(gè)四邊形紙片的周長(zhǎng)的最小值和最大值分別為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,長(zhǎng)方形紙片ABCD中,AD=BC=7,沿對(duì)稱軸EF折疊,若折疊后A′B′與C′D′間的距離為6,則原紙片的寬AB=
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,長(zhǎng)方形紙片OABC放入平面直角坐標(biāo)系中,使OA、OC分別落在x軸、y)軸上,連結(jié)OB,將紙片OABC沿OB折疊,使點(diǎn)A落在點(diǎn)A′處,A′B與y軸交于點(diǎn)F,且知OA=1,AB=2.
(1)分別求出OF的長(zhǎng)度和點(diǎn)A′坐標(biāo);
(2)設(shè)過(guò)點(diǎn)B的雙曲線為y=
kx
(x>0),則k=
2
2
;
(3)如果D為反比例函數(shù)在第一象限圖象上的點(diǎn),且D點(diǎn)的橫坐標(biāo)為2,在x軸上求一點(diǎn)P,使PB+PD最小.

查看答案和解析>>

同步練習(xí)冊(cè)答案