已知△ABC中,AC=BC,∠C=120°,點(diǎn)D為AB邊的中點(diǎn),∠EDF=60°,DE、DF分別交AC、BC于E、F點(diǎn).
(1)如圖1,若EF∥AB.求證:DE=DF.
(2)如圖2,若EF與AB不平行. 則問(wèn)題(1)的結(jié)論是否成立?說(shuō)明理由.
分析:(1)根據(jù)SAS證明△ADE≌△BDF,再根據(jù)全等三角形的性質(zhì)可得DE=DF;
(2)過(guò)D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.可證明DM=DN.再分一、當(dāng)M與E重合時(shí),N就一定與F重合.二、當(dāng)M落在C、E之間時(shí),N就一定落在B、F之間.三、當(dāng)M落在A、E之間時(shí),N就一定落在C、F之間.三種情況討論即可求解.
解答:解:(1)∵EF∥AB.
∴∠FEC=∠A=30°.
∠EFC=∠B=30°
∴EC=CF.
又∵AC=BC
∴AE=BF
D是AB中點(diǎn).
∴DB=AD
∴△ADE≌△BDF.
∴DE=DF

(2)過(guò)D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.
∵AC=BC,
∴∠A=∠B,
又∵∠ACB=120°,
∴∠A=∠B=(180°-∠ACB)÷2=30°,
∴∠ADM=∠BDN=60°,
∴∠MDN=180°-∠ADM-∠BDN=60°.
∵AC=BC、AD=BD,
∴∠ACD=∠BCD,
∴DM=DN.
由∠MDN=60°、∠EDF=60°,可知:
一、當(dāng)M與E重合時(shí),N就一定與F重合.此時(shí):
DM=DE、DN=DF,結(jié)合證得的DM=DN,得:DE=DF.
二、當(dāng)M落在C、E之間時(shí),N就一定落在B、F之間.此時(shí):
∠EDM=∠EDF-∠MDF=60°-∠MDF,
∠FDN=∠MDN-∠MDF=60°-∠MDF,
∴∠EDM=∠FDN,
又∵∠DME=∠DNF=90°、DM=DN,
∴△DEM≌△DFN(ASA),
∴DE=DF.
三、當(dāng)M落在A、E之間時(shí),N就一定落在C、F之間.此時(shí):
∠EDM=∠MDN-∠EDN=60°-∠EDN,
∠FDN=∠EDF-∠EDN=60°-∠EDN,
∴∠EDM=∠FDN,
又∵∠DME=∠DNF=90°、DM=DN,
∴△DEM≌△DFN(ASA),
∴DE=DF.
綜上一、二、三所述,得:DE=DF.
點(diǎn)評(píng):考查了等腰三角形的性質(zhì)和全等三角形的判定與性質(zhì),注意第(2)題分三種情況討論求解,有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、已知△ABC中,AC=BC,∠C=Rt∠.如圖,將△ABC進(jìn)行折疊,使點(diǎn)A落在線段BC上(包括點(diǎn)B和點(diǎn)C),設(shè)點(diǎn)A的落點(diǎn)為D,折痕為EF,當(dāng)△DEF是等腰三角形時(shí),點(diǎn)D可能的位置共有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的頂點(diǎn)F是AB中點(diǎn),兩邊FD、FE分別交AC,BC于點(diǎn)D,E兩點(diǎn),給出以下個(gè)結(jié)論:
①CD=BE  
②四邊形CDFE不可能是正方形  
③△DEF是等腰直角三角形
S四邊形CDFE=
12
S△ABC
.當(dāng)∠DFE在△ABC內(nèi)繞頂點(diǎn)F旋轉(zhuǎn)時(shí)(點(diǎn)D不與A,C重合),
上述結(jié)論中始終正確的有
①③④
①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,AC=BC,∠ACB=90°,BD平分∠ABC,求證:AB=BC+CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,AC=BC,AD平分∠BAC交BC于D,點(diǎn)E為AB上一點(diǎn),且∠EDB=∠B,現(xiàn)有下列兩個(gè)結(jié)論:①AB=AD+CD ②AB=AC+CD.
(1)如圖1,若∠C=90°,則結(jié)論
成立,并證明你的結(jié)論.
(2)如圖2,若∠C=100°,則結(jié)論
成立,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,AC=BC,∠ACB=90゜,點(diǎn)P在射線AC上,連接PB,將線段PB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90゜得線段BN,AN交直線BC于M.
(1)如圖1.若點(diǎn)P與點(diǎn)C重合,則
AM
MN
=
1
1
,
MC
AP
=
1
2
1
2
(直接寫(xiě)出結(jié)果):
(2)如圖2,若點(diǎn)P在線段AC上,求證:AP=2MC;
(3)如圖3,若點(diǎn)P在線段AC的延長(zhǎng)線上,完成圖形,并直接寫(xiě)出
MC
AP
=
1
2
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案