【題目】如圖,身高為1.6m的小李A(yù)B站在河的一岸,利用樹的倒影去測(cè)對(duì)岸一棵樹CD的高度,CD的倒影是C′D,且AEC′在一條視線上,河寬BD=12m,且BE=2m,則樹高CD=m.
【答案】8
【解析】利用△ABE∽△CDE,對(duì)應(yīng)線段成比例解題,
因?yàn)锳B,CD均垂直于地面,所以AB∥CD,
則有△ABE∽△CDE,
∵△ABE∽△CDE ,
∴ = ,
又∵AB=1.6,BE=2,BD=12,
∴DE=10,
∴ = ,
∴CD=8.
故填8.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用相似三角形的應(yīng)用的相關(guān)知識(shí)可以得到問題的答案,需要掌握測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)成比例”的原理解決;測(cè)距:測(cè)量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果10b=n,那么b為n的勞格數(shù),記為b=d(n),由定義可知:10b=n與b=d(n)所表示的b、n兩個(gè)量之間的同一關(guān)系.
(1)根據(jù)勞格數(shù)的定義,填空:d(10)= , d(10﹣2)=;
(2)勞格數(shù)有如下運(yùn)算性質(zhì): 若m、n為正數(shù),則d(mn)=d(m)+d(n),d( )=d(m)﹣d(n).
根據(jù)運(yùn)算性質(zhì),填空:
=(a為正數(shù)),若d(2)=0.3010,則d(4)= , d(5)= , d(0.08)=;
(3)如表中與數(shù)x對(duì)應(yīng)的勞格數(shù)d(x)有且只有兩個(gè)是錯(cuò)誤的,請(qǐng)找出錯(cuò)誤的勞格數(shù),說明理由并改正.
x | 1.5 | 3 | 5 | 6 | 8 | 9 | 12 | 27 |
d(x) | 3a﹣b+c | 2a﹣b | a+c | 1+a﹣b﹣c | 3﹣3a﹣3c | 4a﹣2b | 3﹣b﹣2c | 6a﹣3b |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長(zhǎng)為a的正方形中挖掉一個(gè)邊長(zhǎng)為b的小正方形(a>b).把余下的部分剪拼成一個(gè)矩形(如圖).通過計(jì)算圖形(陰影部分)的面積,驗(yàn)證了一個(gè)等式,則這個(gè)等式是( )
A. a2﹣b2=(a+b)(a﹣b) B. (a+b)2=a2+2ab+b2
C. (a﹣b)2=a2﹣2ab+b2 D. a2﹣ab=a(a﹣b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC , 按如下步驟作圖:
第一步,分別以點(diǎn)A、D為圓心,以大于 AD的長(zhǎng)為半徑在AD兩側(cè)作弧,交于兩點(diǎn)M、N;
第二步,連接MN分別交AB、AC于點(diǎn)E、F;
第三步,連接DE、DF .
若BD=6,AF=4,CD=3,則BE的長(zhǎng)是( ).
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明同學(xué)用自制的直角三角形紙板DEF測(cè)量樹的高度AB , 他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上.已知紙板的兩條直角邊DF=50cm,EF=30cm,測(cè)得邊DF離地面的高度AC=1.5m,CD=20m,則樹高AB為( 。.
A.12 m
B.13.5 m
C.15 m
D.16.5 m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是AB邊上一點(diǎn),DE∥BC交AC于E , AD:DB=1:2,則△ADE與△ABC的面積之比為( )
A.1:2
B.1:4
C.1:8
D.1:9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角△ABC中,BE , CD是高,它們相交于O , 則圖中與△BOD相似的三角形有( 。
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰直角三角形ABC中,AB=AC,∠BAC=90°.點(diǎn)P為直線AB上一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合),連接PC,點(diǎn)D在直線BC上,且PD=PC.過點(diǎn)P作PE^PC,點(diǎn)D,E在直線AC的同側(cè),且PE=PC,連接BE.
(1)情況一:當(dāng)點(diǎn)P在線段AB上時(shí),圖形如圖1 所示;
情況二:如圖2,當(dāng)點(diǎn)P在BA的延長(zhǎng)線上,且AP<AB時(shí),請(qǐng)依題意補(bǔ)全圖2;.
(2)請(qǐng)從問題(1)的兩種情況中,任選一種情況,完成下列問題:
①求證:∠ACP=∠DPB;
②用等式表示線段BC,BP,BE之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com