【題目】在坐標(biāo)系xOy中,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣3,0)和B(1,0),與y軸交于點(diǎn)C,

(1)求拋物線的表達(dá)式;

(2)若點(diǎn)D為此拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),當(dāng)△DAC的面積最大時(shí),求點(diǎn)D的坐標(biāo);

(3)設(shè)拋物線頂點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)為M,記拋物線在第二象限之間的部分為圖象G.點(diǎn)N是拋物線對(duì)稱軸上一動(dòng)點(diǎn),如果直線MN與圖象G有公共點(diǎn),請(qǐng)結(jié)合函數(shù)的圖象,直接寫出點(diǎn)N縱坐標(biāo)t的取值范圍.

【答案】(1)y=﹣x2﹣2x+3;(2)D(﹣, );(3)當(dāng)2<t≤4時(shí),直線MN與函數(shù)圖象G有公共點(diǎn).

【解析】試題分析:(1)設(shè)拋物線的解析式為y=ax+3)(x﹣1),然后將a=﹣1代入即可求得拋物線的解析式;

2)過(guò)點(diǎn)DDEy軸,交AC于點(diǎn)E.先求得點(diǎn)C的坐標(biāo),然后利用待定系數(shù)法求得直線AC的解析式,設(shè)點(diǎn)D的坐標(biāo)為,則E點(diǎn)的坐標(biāo)為(x,x+3),于是得到DE的長(zhǎng)(用含x的式子表示,接下來(lái),可得到ADC的面積與x的函數(shù)關(guān)系式,最后依據(jù)配方法可求得三角形的面積最大時(shí),點(diǎn)D的坐標(biāo);

3)如圖2所示:先求得拋物線的頂點(diǎn)坐標(biāo),于是可得到點(diǎn)M的坐標(biāo),可判斷出點(diǎn)M在直線AC上,從而可求得點(diǎn)N的坐標(biāo),當(dāng)點(diǎn)N′與拋物線的頂點(diǎn)重合時(shí),N′的坐標(biāo)為(﹣14),于是可確定出t的取值范圍.

試題解析:(1)設(shè)拋物線的解析式為y=ax+3)(x﹣1).

由題意可知:a=﹣1

拋物線的解析式為y=﹣1x+3)(x﹣1),即;

2)如圖所示:過(guò)點(diǎn)DDE∥y軸,交AC于點(diǎn)E

當(dāng)x=0時(shí),y=3

∴C0,3).

設(shè)直線AC的解析式為y=kx+3

A﹣3,0)代入得:﹣3k+3=0,解得:k=1,

直線AC的解析式為y=x+3

設(shè)點(diǎn)D的坐標(biāo)為(x, ),則E點(diǎn)的坐標(biāo)為(x,x+3).

DE=x+3=

∴△ADC的面積=DEOA=×3×=

當(dāng)x=時(shí),ADC的面積有最大值.

D

3)如圖2所示:

y==,

拋物線的頂點(diǎn)坐標(biāo)為(﹣1,4).

點(diǎn)M與拋物線的頂點(diǎn)關(guān)于y軸對(duì)稱,

∴M1,4).

x=1代入直線AC的解析式得y=4,

點(diǎn)M在直線AC上.

x=﹣1代入直線AC的解析式得:y=2,

∴N﹣1,2).

當(dāng)點(diǎn)N′與拋物線的頂點(diǎn)重合時(shí),N′的坐標(biāo)為(﹣1,4).

當(dāng)2t≤4時(shí),直線MN與函數(shù)圖象G有公共點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算﹣1+2,結(jié)果正確的是( 。

A.1B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面內(nèi),若兩條直線相交,則公共點(diǎn)的個(gè)數(shù)是;若兩條直線平行,則公共點(diǎn)的個(gè)數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線a∥b,b∥c,c∥d,則a與d的關(guān)系是什么?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,下列說(shuō)法中錯(cuò)誤的是( 。
A.∠3和∠5是同位角
B.∠4和∠5是同旁內(nèi)角
C.∠2和∠4是對(duì)頂角
D.∠1和∠4是內(nèi)錯(cuò)角

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題是真命題的是( )

A. 同旁內(nèi)角相等,兩直線平行

B. 對(duì)角線互相平分的四邊形是平行四邊形

C. 相等的兩個(gè)角是對(duì)頂角

D. 圓內(nèi)接四邊形對(duì)角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在Rt△ABC中,∠C=90°,當(dāng)∠A的度數(shù)不斷增大時(shí),cosA的值的變化情況是(
A.不斷變大
B.不斷減小
C.不變
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一家今年剛成立的小型快遞公司業(yè)務(wù)量逐月攀升,今年7月份和9月份完成投送的快遞件數(shù)分別是20萬(wàn)件和24.2萬(wàn)件.若假設(shè)該公司每月投送的快遞件數(shù)的增長(zhǎng)率相同,則這家公司投送快遞件數(shù)的月平均增長(zhǎng)率為 ________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等邊△ABC中

(1)如圖1,P,Q是BC邊上的兩點(diǎn),AP=AQ,∠BAP=20°,求∠AQB的度數(shù);

(2)點(diǎn)P,Q是BC邊上的兩個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)P在點(diǎn)Q的左側(cè),且AP=AQ,點(diǎn)Q關(guān)于直線AC的對(duì)稱點(diǎn)為M,連接AM,PM.

①依題意將圖2補(bǔ)全;

②小茹通過(guò)觀察、實(shí)驗(yàn)提出猜想:在點(diǎn)P,Q運(yùn)動(dòng)的過(guò)程中,始終有PA=PM,小茹把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過(guò)討論,形成了證明該猜想的幾種想法:

想法1:要證明PA=PM,只需證△APM是等邊三角形;

想法2:在BA上取一點(diǎn)N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;

想法3:將線段BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…

請(qǐng)你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案