如圖,有兩條拋物線y=ax2(a>0),y=mx2+nx(m<0),拋物線y=mx2+nx的頂點在y=ax2上,且與x軸交于(0,0),(4,0)兩點,則不等式(a-m)x2-nx<0的解集是________.

0<x<2
分析:根據(jù)拋物線y=mx2+nx的頂點在y=ax2上,且與x軸交于(0,0),(4,0)兩點,得出圖象的對稱軸為直線x=2,再利用不等式(a-m)x2-nx<0進而得出ax2<mx2+nx的解集即可.
解答:∵兩條拋物線y=ax2(a>0),y=mx2+nx(m<0),拋物線y=mx2+nx的頂點在y=ax2上,且與x軸交于(0,0),(4,0)兩點,
∴y=mx2+nx的對稱軸是:直線x=2,
∵不等式(a-m)x2-nx<0可以變形為ax2<mx2+nx,
∴利用圖象可以得出不等式的解集為:0<x<2.
故答案為:0<x<2.
點評:此題主要考查了二次函數(shù)與不等式的關(guān)系,利用圖象得出不等式的解集是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線:y1=-
12
x2+2x
將拋物線y1向右平移2個單位,再向上平移1個精英家教網(wǎng)單位,得到拋物線y2,
(1)求拋物線y2的解析式.
(2)如圖,拋物線y2的頂點為P,x軸上有一動點M,在y1、y2這兩條拋物線上是否存在點N,使O(原點)、P、M、N四點構(gòu)成以O(shè)P為一邊的平行四邊形?若存在,求出N點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•寬城區(qū)一模)如圖,在平面直角坐標系中,有一矩形ABCD,已知A(1,3),B(3,3),D(1,-1).有兩條拋物線l1、l2都經(jīng)過A、B兩點,且關(guān)于AB所在直線對稱,其中拋物線l1經(jīng)過原點,拋物線l2交y軸于點E.設(shè)P、Q兩點分別在拋物線l1、l2上運動.
(1)求拋物線l1的解析式.
(2)直接寫出拋物線l2的解析式.
(3)當(dāng)四邊形ADPQ為平行四邊形時,求點P的橫坐標.
(4)當(dāng)點P運動到拋物線l1的頂點時,設(shè)直線PQ的解析式y(tǒng)=kx+b.
①若直線PQ經(jīng)過點D,交線段AB于F,求△ADF的面積.
②若直線PQ分得矩形ABCD較小部分的面積大于0且不超過矩形ABCD面積的
1
5
,直接寫出b的取值范圍.
【參考公式:二次函數(shù)y=ax2+bx+c圖象的頂點坐標為(-
b
2a
4ac-b2
4a
)】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標系中,有一矩形ABCD,已知A(1,3),B(3,3),D(1,-1).有兩條拋物線l1、l2都經(jīng)過A、B兩點,且關(guān)于AB所在直線對稱,其中拋物線l1經(jīng)過原點,拋物線l2交y軸于點E.設(shè)P、Q兩點分別在拋物線l1、l2上運動.
(1)求拋物線l1的解析式.
(2)直接寫出拋物線l2的解析式.
(3)當(dāng)四邊形ADPQ為平行四邊形時,求點P的橫坐標.
(4)當(dāng)點P運動到拋物線l1的頂點時,設(shè)直線PQ的解析式y(tǒng)=kx+b.
①若直線PQ經(jīng)過點D,交線段AB于F,求△ADF的面積.
②若直線PQ分得矩形ABCD較小部分的面積大于0且不超過矩形ABCD面積的數(shù)學(xué)公式,直接寫出b的取值范圍.
【參考公式:二次函數(shù)y=ax2+bx+c圖象的頂點坐標為(-數(shù)學(xué)公式數(shù)學(xué)公式)】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年吉林省長春市寬城區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖,在平面直角坐標系中,有一矩形ABCD,已知A(1,3),B(3,3),D(1,-1).有兩條拋物線l1、l2都經(jīng)過A、B兩點,且關(guān)于AB所在直線對稱,其中拋物線l1經(jīng)過原點,拋物線l2交y軸于點E.設(shè)P、Q兩點分別在拋物線l1、l2上運動.
(1)求拋物線l1的解析式.
(2)直接寫出拋物線l2的解析式.
(3)當(dāng)四邊形ADPQ為平行四邊形時,求點P的橫坐標.
(4)當(dāng)點P運動到拋物線l1的頂點時,設(shè)直線PQ的解析式y(tǒng)=kx+b.
①若直線PQ經(jīng)過點D,交線段AB于F,求△ADF的面積.
②若直線PQ分得矩形ABCD較小部分的面積大于0且不超過矩形ABCD面積的,直接寫出b的取值范圍.
【參考公式:二次函數(shù)y=ax2+bx+c圖象的頂點坐標為(-)】

查看答案和解析>>

同步練習(xí)冊答案