【題目】如圖,在ABC中,∠C=,點PAC上運動,點DAB上,PD始終保持與PA相等,BD的垂直平分線交BC于點E,交BD于點F,連接DE.若AC=6,BC=8PA=2,則線段DE的長為________

【答案】

【解析】

連接OD,根據(jù)等腰三角形的性質(zhì)得到∠A=∠PDA,根據(jù)線段垂直平分線的性質(zhì)得到EBED,于是得到DEDP;連接PE,設(shè)DEx,則EBEDxCE8x,根據(jù)勾股定理即可得到結(jié)論.

PDPA,

∴∠A=∠PDA,

EFBD的垂直平分線,

EBED,

∴∠B=∠EDB,

∵∠C90°,

∴∠A+∠B90°,

∴∠PDA+∠EDB90°

∴∠PDE180°90°90°,

DEDP,

連接PE,

設(shè)DEx,則EBEDx,CE8x,

∵∠C=∠PDE90°,

PC2CE2PE2PD2DE2,

42+(8x222x2,

解得:x

DE

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上有A、B、C、D四個點,且線段AB=4,CD=6,已知A表示的數(shù)是﹣10,C表示的數(shù)是8,若線段AB以每秒6個單位長度的速度,線段CD以每秒2個單位長度的速度在數(shù)軸上運動(AB左側(cè),CD左側(cè))

(1)B,D兩點所表示的數(shù)分別是   、   ;

(2)若線段AB向右運動,同時線段CD向左運動,經(jīng)過多少秒時,BC=2;

(3)若線段AB、CD同時向右運動,同時點P從原點出發(fā)以每秒1個單位長度的速度向右運動,經(jīng)過多少秒時,點P到點A,C的距離相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)先化簡,再求值: x2xy2+(﹣2x+y2),其中x2,y=﹣3

2)已知:若a,b互為相反數(shù),c,d互為倒數(shù),m的絕對值為最小正整數(shù),求代數(shù)式﹣2cd+m的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察一組數(shù)據(jù):2,4,7,11,16,22,29,…,它們有一定的規(guī)律,若記第一個數(shù)為a1,第二個數(shù)記為a2,…,第n個數(shù)記為an.

(1)請寫出29后面的第一個數(shù);

(2)通過計算a2-a1,a3-a2,a4-a3,…由此推算a100-a99的值;

(3)根據(jù)你發(fā)現(xiàn)的規(guī)律求a100的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將連續(xù)的奇數(shù)1、3、5、7、9,……排成如下的數(shù)表:

(1)十字框中的5個數(shù)的和與中間的數(shù)23有什么關(guān)系?若將十字框上下左右平移,可框住另外5個數(shù),這5個數(shù)還有這種規(guī)律嗎?

(2)設(shè)十字框中中間的數(shù)為a,用含a的式子表示十字框中的其他四個數(shù);

(3)十字框中的5個數(shù)的和能等于2018嗎?若能,請寫出這5個數(shù);若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,D是BC邊上一點,∠ADC=3∠BAD,BD=8,DC=7,則AB的值為( )

A. 15 B. 20 C. 2+7 D. 2+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是張亮、李娜兩位同學零花錢全學期各項支出的統(tǒng)計圖.根據(jù)統(tǒng)計圖,下列對兩位同學購買書籍支出占全學期總支出的百分比作出的判斷中,正確的是(

A. 張亮的百分比比李娜的百分比大 B. 張娜的百分比比張亮的百分比大

C. 張亮的百分比與李娜的百分比一樣大 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知梯形ABCD中,ABCD,D=90°,BE平分∠ABC,交CD于點E,F(xiàn)AB的中點,聯(lián)結(jié)AE、EF,且AEBE.

求證:(1)四邊形BCEF是菱形;

(2).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:AB是⊙O的直徑,AC交⊙OG,EAG上一點,D為△BCE內(nèi)心,BEADF,且∠DBE=BAD.

(1)求證:BC是⊙O的切線;

(2)求證:DF=DG;

(3)若∠ADG=45°,DF=1,則有兩個結(jié)論:①ADBD的值不變;②ADBD的值不變,其中有且只有一個結(jié)論正確,請選擇正確的結(jié)論,證明并求其值.

查看答案和解析>>

同步練習冊答案