如圖,在直角坐標平面內(nèi),函數(shù)(x>0,m是常數(shù))的圖象經(jīng)過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連接AD,DC,CB.
(1)若△ABD的面積為4,求點B的坐標;
(2)求證:DC∥AB;
(3)當AD=BC時,求直線AB的函數(shù)解析式.

【答案】分析:(1)由函數(shù)(x>0,m是常數(shù))的圖象經(jīng)過A(1,4),可求m=4,由已知條件可得B點的坐標為(a,),又由△ABD的面積為4,即a(4-)=4,得a=3,所以點B的坐標為(3,);
(2)依題意可證,=a-1,=a-1,,所以DC∥AB;
(3)由于DC∥AB,當AD=BC時,有兩種情況:①當AD∥BC時,四邊形ADCB是平行四邊形,由(2)得,點B的坐標是
(2,2),設(shè)直線AB的函數(shù)解析式為y=kx+b,用待定系數(shù)法可以求出解析式(把點A,B的坐標代入),是y=-2x+6.
②當AD與BC所在直線不平行時,四邊形ADCB是等腰梯形,則BD=AC,可求點B的坐標是(4,1),設(shè)直線AB的函數(shù)解析式
y=kx+b,用待定系數(shù)法可以求出解析式(把點A,B的坐標代入),是y=-x+5.
解答:(1)解:∵函數(shù)y=(x>0,m是常數(shù))圖象經(jīng)過A(1,4),
∴m=4.
∴y=,
設(shè)BD,AC交于點E,據(jù)題意,可得B點的坐標為(a,),D點的坐標為(0,),E點的坐標為(1,),
∵a>1,
∴DB=a,AE=4-
由△ABD的面積為4,即a(4-)=4,
得a=3,
∴點B的坐標為(3,);

(2)證明:據(jù)題意,點C的坐標為(1,0),DE=1,
∵a>1,
易得EC=,BE=a-1,
=a-1,=a-1.
且∠AEB=∠CED,
∴△AEB∽△CED,
∴∠ABE=∠CDE,
∴DC∥AB;

(3)解:∵DC∥AB,
∴當AD=BC時,有兩種情況:
①當AD∥BC時,四邊形ADCB是平行四邊形,由(2)得,

∴a-1=1,得a=2.
∴點B的坐標是(2,2).
設(shè)直線AB的函數(shù)解析式為y=kx+b,把點A,B的坐標代入,
,
解得
故直線AB的函數(shù)解析式是y=-2x+6.
②當AD與BC所在直線不平行時,四邊形ADCB是等腰梯形,則BD=AC,
∴a=4,
∴點B的坐標是(4,1).
設(shè)直線AB的函數(shù)解析式為y=kx+b,把點A,B的坐標代入,
,
解得,
故直線AB的函數(shù)解析式是y=-x+5.
綜上所述,所求直線AB的函數(shù)解析式是y=-2x+6或y=-x+5.
點評:本題要注意利用一次函數(shù)和反比例函數(shù)的特點,列出方程,求出未知數(shù)的值,用待定系數(shù)法從而求得其解析式.
主要是注意分類討論和待定系數(shù)法的運用,需學生熟練掌握.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標平面xOy中,拋物線C1的頂點為A(-1,-4),且過點B(-3,0)
(1)寫出拋物線C1與x軸的另一個交點M的坐標;
(2)將拋物線C1向右平移2個單位得拋物線C2,求拋物線C2的解析式;
(3)寫出陰影部分的面積S.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標平面中,Rt△ABC的斜邊AB在x軸上,直角頂點C在y軸的負半軸上,cos∠ABC=
45
,點P在線段OC上,且PO、OC的長是方程x2-15x+36=0的兩根.
(1)求P點坐標;
(2)求AP的長;
(3)在x軸上是否存在點Q,使以A、Q、C、P為頂點的四邊形是梯形?若存在,請求出直線PQ的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標平面內(nèi),函數(shù)y=
m
x
(x>0,m是常熟)的圖象經(jīng)過A(1,4),B(a,b),其中a>1,過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連接AD,DC,CB
(Ⅰ)求函數(shù)y=
m
x
的解析式;
(Ⅱ)若△ABD的面積為4,求點B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

完成下列各題:
(1)解方程組
2x+y=2;         ①
3x-2y=10.      ②

(2)如圖,在直角坐標平面內(nèi),O為原點,點A的坐標為(10,0),點B在第一象限內(nèi),BO=5,sin∠BOA=
3
5
.求cos∠BAO的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標平面內(nèi)的△ABC中,點A的坐標為(0,2),點C的坐標為(5,5),要使以A、B、C、D為頂點的四邊形是平行四邊形,且點D坐標在第一象限,那么點D的坐標是
(2,5)或(8,5)
(2,5)或(8,5)

查看答案和解析>>

同步練習冊答案