已知一個正多邊形有一個內(nèi)角是144°,那么這個正多邊形是正________邊形.


分析:本題需先根據(jù)已知條件設出正多邊形的邊數(shù),再根據(jù)正多邊形的計算公式得出結果即可.
解答:設這個正多邊形是正n邊形,根據(jù)題意得:
(n-2)×180°÷n=144°,
解得:n=10.
故答案為:十.
點評:本題主要考查了正多邊形的內(nèi)角,在解題時要根據(jù)正多邊形的內(nèi)角公式列出式子是本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

歸納猜想:同學們,讓我們一起進行一次研究性學習:
(1)如圖1已知正三角形ABC的中心為O,半徑為R,將其沿直線l向右翻滾,當正三角形翻滾一周時,其中心O經(jīng)過的路程是多少?

(2)如圖2將半徑為R的正方形沿直線l向右翻滾,當正方形翻滾一周時,其中心O經(jīng)過的路程是多少?

(3)猜想:把正多邊形翻滾一周,其中心O所經(jīng)過的路程是多少(R為正多邊形的半徑,可參看圖2)?請說明理由.

(4)進一步猜想:任何多邊形都有一個外接圓,若將任意圓內(nèi)接多邊形翻滾一周時,其外心所經(jīng)過的路程是否是一個定值(R為多邊形外接圓的半徑)?為什么?請以任意三角形為例說明(如圖12).
通過以上猜想你可得到什么樣的結論?請寫出來.

查看答案和解析>>

科目:初中數(shù)學 來源:新課標教材導學  數(shù)學七年級(第二學期) 題型:022

已知下列說法:

①線段只有一條對稱軸;

②所有的等腰三角形都只有一條對稱軸;

③直角三角形不是軸對稱圖形;

④所有的正多邊形都是軸對稱圖形;

⑤兩條平行直線組成了一個軸對稱圖形,它有無數(shù)條對稱軸.

其中正確的說法是:________(將正確說法的題號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

歸納猜想:同學們,讓我們一起進行一次研究性學習:
(1)如圖1已知正三角形ABC的中心為O,半徑為R,將其沿直線l向右翻滾,當正三角形翻滾一周時,其中心O經(jīng)過的路程是多少?

(2)如圖2將半徑為R的正方形沿直線l向右翻滾,當正方形翻滾一周時,其中心O經(jīng)過的路程是多少?

(3)猜想:把正多邊形翻滾一周,其中心O所經(jīng)過的路程是多少(R為正多邊形的半徑,可參看圖2)?請說明理由.

(4)進一步猜想:任何多邊形都有一個外接圓,若將任意圓內(nèi)接多邊形翻滾一周時,其外心所經(jīng)過的路程是否是一個定值(R為多邊形外接圓的半徑)?為什么?請以任意三角形為例說明(如圖12).
通過以上猜想你可得到什么樣的結論?請寫出來.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年第7屆“學用杯”全國數(shù)學知識應用競賽九年級初賽試卷(A卷)(解析版) 題型:解答題

歸納猜想:同學們,讓我們一起進行一次研究性學習:
(1)如圖1已知正三角形ABC的中心為O,半徑為R,將其沿直線l向右翻滾,當正三角形翻滾一周時,其中心O經(jīng)過的路程是多少?

(2)如圖2將半徑為R的正方形沿直線l向右翻滾,當正方形翻滾一周時,其中心O經(jīng)過的路程是多少?

(3)猜想:把正多邊形翻滾一周,其中心O所經(jīng)過的路程是多少(R為正多邊形的半徑,可參看圖2)?請說明理由.

(4)進一步猜想:任何多邊形都有一個外接圓,若將任意圓內(nèi)接多邊形翻滾一周時,其外心所經(jīng)過的路程是否是一個定值(R為多邊形外接圓的半徑)?為什么?請以任意三角形為例說明(如圖12).
通過以上猜想你可得到什么樣的結論?請寫出來.

查看答案和解析>>

同步練習冊答案