【題目】(本題滿分10分)如圖,直線y=﹣x+6分別與x軸、y軸交于A、B兩點;直線y=x與AB交于點C,與過點A且平行于y軸的直線交于點D.點E從點A出發(fā),以每秒1個單位的速度沿x軸向左運動.過點E作x軸的垂線,分別交直線AB、OD于P、Q兩點,以PQ為邊向右作正方形PQMN.設正方形PQMN與△ACD重疊部分(陰影部分)的面積為S(平方單位),點E的運動時間為t(秒).
(1)求點C的坐標.
(2)當0<t<5時,求S與t之間的函數(shù)關系式,并求S的最大值。
(3)當t>0時,直接寫出點(5,3)在正方形PQMN內(nèi)部時t的取值范圍。
【答案】(1)C(3,);(2)S=4t2﹣40t+100,S最大=·(3)3<t<4 或 t>7
【解析】試題分析:(1)解y=﹣x+6與y=x聯(lián)立的方程組即可;
(2)分別求出0<t≤時和≤t<5時的S與t之間的函數(shù)關系式,然后利用二次函數(shù)的性質(zhì)求出最大值,比較取大的;(3)點(5,3)在正方形PQMN內(nèi)部時,點E在x軸上運動,分情況討論.
試題解析:(1)∵直線y=﹣x+6與直線y=x交于點C,
∴,解得,
∴C(3,);
(2)∵A點坐標為(8,0),
根據(jù)題意,得AE=t,OE=8﹣t
∴點Q的縱坐標為(8﹣t),點P的縱坐標為t,
∴PQ=(8﹣t)﹣t=10﹣2t.
當0<t≤時,S=t(10﹣2t),即S=﹣2t2+10t.當t=時,S最大=
當≤t<5時,S=(10﹣2t)2,即S=4t2﹣40t+100.當t=時,S最大=
∵>, ∴S最大=
(3)3<t<4 或 t>7
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD.BC∥AD.
(1)求證:△ABC≌△CDA;
(2)△ABC關于對角線AC的對稱圖形為△AEC,EC、AD交于點F,判斷△ACF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為半圓的直徑,O為圓心,C為圓弧上一點,AD垂直于過C點的切線,垂足為D,AB的延長線交直線CD于點E.
(1)求證:AC平分∠DAB;
(2)若BE=2,CE=2,CF⊥AB,垂足為點F.
①求⊙O的半徑;②求CF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進行了抽樣調(diào)查.該部門隨機抽取了30名工人某天每人加工零件的個數(shù),數(shù)據(jù)如下:
20 | 21 | 19 | 16 | 27 | 18 | 31 | 29 | 21 | 22 |
25 | 20 | 19 | 22 | 35 | 33 | 19 | 17 | 18 | 29 |
18 | 35 | 22 | 15 | 18 | 18 | 31 | 31 | 19 | 22 |
整理上面數(shù)據(jù),得到條形統(tǒng)計圖:
樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:
統(tǒng)計量 | 平均數(shù) | 眾數(shù) | 中位數(shù) |
數(shù)值 | 23 | m | 21 |
根據(jù)以上信息,解答下列問題:
(1)上表中眾數(shù)m的值為 ;
(2)為調(diào)動工人的積極性,該部門根據(jù)工人每天加工零件的個數(shù)制定了獎勵標準,凡達到或超過這個標準的工人將獲得獎勵.如果想讓一半左右的工人能獲獎,應根據(jù) 來確定獎勵標準比較合適.(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”)
(3)該部門規(guī)定:每天加工零件的個數(shù)達到或超過25個的工人為生產(chǎn)能手.若該部門有300名工人,試估計該部門生產(chǎn)能手的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,假分數(shù)可以化為整數(shù)與真分數(shù)的和的形式.例如:
在分式中,對于只含有一個字母的分式,當分子的次數(shù)大于或等于分母的次數(shù)時, 我們稱之為“假分式”;當分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”.
例如:像 , …,這樣的分式是假分式;像,…,這樣
的分式是真分式.類似的,假分式也可以化為整式與真分式的和的形式.
解決下列問題:
(1)將分式 化為整式與真分式的和的形式為: .(直接寫出結(jié)果即可)
(2)如果的值為整數(shù),求x的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和小亮進行百米賽跑,小明比小亮跑得快,如果兩人同時起跑,小明肯定贏,現(xiàn)在小明讓小亮先跑若干米,圖中,分別表示兩人的路程與小明追趕時間的關系.
(1)哪條線表示小明的路程與時間之間的關系?
(2)小明讓小亮先跑了多少米?
(3)誰將贏得這場比賽?
(4)對應的一次函數(shù)表達式中,一次項系數(shù)是多少?它的實際意義是什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com