【題目】已知二次函數(shù).
(1)求頂點坐標和對稱軸方程;
(2)求該函數(shù)圖象與x標軸的交點坐標;
(3)指出x為何值時,;當x為何值時,.
【答案】(1)y=x2-4x+3= x2-4x+4-1=(x-2)2-1
所以,拋物線的頂點坐標是(2,-1),對稱軸方程為x=2.
(2)令y=0,得x2-4x+3=0,解得x1=1,x2=3,所以函數(shù)圖象與x軸的交點坐標為(1,0),(3,0).
(3)當x<1,x>3時,y>0;當1<x<3時,y<0;
【解析】(1)根據(jù)二次函數(shù)的頂點坐標公式和對稱軸公式分別求出即可;
(2)令y=0,得 , 解之即可;
(3)根據(jù)a的值及函數(shù)圖象與x標軸的交點坐標,即可指出x為何值時,;當x為何值時,.
【考點精析】解答此題的關鍵在于理解拋物線與坐標軸的交點的相關知識,掌握一元二次方程的解是其對應的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.
科目:初中數(shù)學 來源: 題型:
【題目】定義:對于任何數(shù)a,符號[a]表示不大于a的最大整數(shù).例如:[5.7]=5,[5]=5,[-1.5]=-2.
(1)[-π]= ;
(2)如果[a]=2,那么a的取值范圍是 ;
(3)如果[]=-5,求滿足條件的所有整數(shù)x;
(4)直接寫出方程6x-3[x]+7=0的解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點A(x,y),點B(x﹣my,mx﹣y)(其中m為常數(shù),且m≠0),則稱B是點A的“m族衍生點”.例如:點A(1,2)的“3族衍生點”B的坐標為(1﹣3×2,3×1﹣2),即B(﹣5,1).
(1)點(2,0)的“2族衍生點”的坐標為 ;
(2)若點A的“3族衍生點”B的坐標是(﹣1,5),則點A的坐標為 ;
(3)若點A(x,0)(其中x≠0),點A的“m族衍生點“為點B,且AB=OA,求m的值;
(4)若點A(x,y)的“m族衍生點”與“﹣m族衍生點”都關于y軸對稱,則點A的位置在 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把六張大小形狀完全相同的小平行四邊形卡片(如圖)放在一個底面為平行四邊形的盒子底部,兩種放置方法如圖2、圖3所示,其中3中的重疊部分是平行四邊形EFGH,若EH=2GH,且圖2中陰影部分的周長比圖3中陰影部分的周長大3.則AB﹣AD的值為( 。
A.0.5B.1C.1.5D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】元旦期間,某商場搞優(yōu)惠促銷活動,其活動內容是:“凡在本商場一次性購物超過100元者,超過100元的部分按9折優(yōu)惠”.在此活動中,李明到該商場為單位一次性購買單價為60元的辦公用品x(x>2)件,則應付款y(元)與商品件數(shù)x(件)之間的關系式是( )
A.y=54xB.y=54x+10
C.y=54x-90D.y=54x+45
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一個直角三角形紙片放置在平面直角坐標系中,是坐標原點,點坐標為,點坐標為,,點是邊上一點(點不與點,點重合),沿折疊該紙片,點的對應點為點,連接.
(1)如圖1,當點在第一象限,且時,求點的坐標;
(2)如圖2,當點為的中點時;
①求證:;
②直接寫出四邊形的面積;
(3)當時,直接寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉到△ 的位置,點B,O分別落在點 , 處,點 在 軸上,再將△ 繞點 順時針旋轉到△ 的位置,點 在 軸上,將△ 繞點 順時針旋轉△ 的位置,點 在 軸上……依次進行下去。若點 ,B(0,2),則點 的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A在函數(shù)(x>0)的圖象上,點B在直線(k為常數(shù),且k0)上,若A,B兩點關于原點對稱,則稱點A,B為函數(shù)y1 , y2 圖象上的一對“友好點”.請問這兩個函數(shù)圖象上的“友好點”對數(shù)的情況為( )
A.只有1對或2對
B.只有1對
C.只有2對
D.只有2對或3對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com