精英家教網 > 初中數學 > 題目詳情

如圖,在△ABC中,AB=AC,∠A=40°.
(1)用直尺和圓規(guī)作AB的垂直平分線DE交AC于點E,垂足為D(保留作圖痕跡,不要求寫作法);
(2)連結BE,求∠EBC的度數.

解:(1)如圖所示:

(2)∵∠A=40°,AB=AC,
∴∠ABC=(180°-40°)÷2=70°,
∵DE垂直平分AB,
∴AE=EB,
∴∠A=∠ABE=40°,
∴∠EBC=70°-40°=30°.
分析:(1)利用線段垂直平分線的作法作圖即可;
(2)首先根據等腰三角形的性質,結合三角形內角和定理計算出∠ABC的度數,再根據垂直平分線的性質可得∠A=∠ABE,再根據等邊對等角可得∠A=∠ABE,進而可算出角度.
點評:此題主要考查了基本作圖,以及線段垂直平分線的作法,等腰三角形的性質,關鍵是掌握線段垂直平分線的作法.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案