(本題滿分10分)
如圖,⊙O是△ABC的外接圓,F(xiàn)H是⊙O 的切線,切點(diǎn)為F,F(xiàn)H∥BC,連結(jié)AF交BC于E,∠ABC的平分線BD交AF于D,連結(jié)BF.
(1)求證:AF平分∠BAC;
(2)求證:BF=FD;
(3)若EF=3,DE=2,求AD的長.
(1)證明略
(2)證明略
(3)
解析:證明(1)連結(jié)OF
∵FH是⊙O的切線
∴OF⊥FH ……………1分
∵FH∥BC ,
∴OF垂直平分BC ………2分
∴
∴AF平分∠BAC …………3分
(2)證明:由(1)及題設(shè)條件可知
∠1=∠2,∠4=∠3,∠5=∠2 , ……………4分
∴∠1+∠4=∠2+∠3.
∴∠1+∠4=∠5+∠3 . ……………5分
∠FDB=∠FBD.
∴BF=FD. ………………6分
(3)解: 在△BFE和△AFB中
∵∠5=∠2=∠1,∠F=∠F,
∴△BFE∽△AFB. ………………7分
∴, …………8分
∴.
∴. ……………9分
∴.
∴.…………10分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
(本題滿分10分)
如圖,將OA = 6,AB = 4的矩形OABC放置在平面直角坐標(biāo)系中,動點(diǎn)M、N以每秒1個單位的速度分別從點(diǎn)A、C同時出發(fā),其中點(diǎn)M沿AO向終點(diǎn)O運(yùn)動,點(diǎn)N沿CB向終點(diǎn)B運(yùn)動,當(dāng)兩個動點(diǎn)運(yùn)動了t秒時,過點(diǎn)N作NP⊥BC,交OB于點(diǎn)P,連接MP.
(1)點(diǎn)B的坐標(biāo)為 ;用含t的式子表示點(diǎn)P的坐標(biāo)為 ;(3分)
(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式(0 < t < 6);并求t為何值時,S有最大值?(4分)
(3)試探究:當(dāng)S有最大值時,在y軸上是否存在點(diǎn)T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC面積的?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.(3分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年江蘇省泰州市中考數(shù)學(xué)試卷 題型:解答題
(本題滿分10分)如圖,以點(diǎn)O為圓心的兩個同心圓中,矩形ABCD的邊BC為大圓的弦,邊AD與小圓相切于點(diǎn)M,OM的延長線與BC相交于點(diǎn)N。
(1)點(diǎn)N是線段BC的中點(diǎn)嗎?為什么?
(2)若圓環(huán)的寬度(兩圓半徑之差)為6cm,AB=5cm,BC=10cm,求小圓的半徑。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com