【題目】如圖,直線x=﹣4與x軸交于點E,一開口向上的拋物線過原點交線段OE于點A,交直線x=﹣4于點B,過B且平行于x軸的直線與拋物線交于點C,直線OC交直線AB于D,且AD:BD=1:3.

(1)求點A的坐標;
(2)若△OBC是等腰三角形,求此拋物線的函數(shù)關系式.

【答案】
(1)

解:如圖,過點D作DF⊥x軸于點F.

由題意,可知OF=AF,則2AF+AE=4①.

∵DF∥BE,

∴△ADF∽△ABE,

= = ,即AE=2AF②,

①與②聯(lián)立,解得AE=2,AF=1,

∴點A的坐標為(﹣2,0);


(2)

解:∵拋物線過原點(0,0),

∴可設此拋物線的解析式為y=ax2+bx.

∵拋物線過原點(0,0)和A點(﹣2,0),

∴對稱軸為直線x= =﹣1,

∵B、C兩點關于直線x=﹣1對稱,B點橫坐標為﹣4,

∴C點橫坐標為2,

∴BC=2﹣(﹣4)=6.

∵拋物線開口向上,

∴∠OAB>90°,OB>AB=OC,

∴當△OBC是等腰三角形時,分兩種情況討論:

①當OB=BC時,設B(﹣4,y1),

則16+ =36,解得y1=±2 (負值舍去).

將A(﹣2,0),B(﹣4,2 )代入y=ax2+bx,

,解得

∴此拋物線的解析式為y= x2+ x;

②當OC=BC時,設C(2,y2),

則4+ =36,解得y2=±4 (負值舍去).

將A(﹣2,0),C(2,4 )代入y=ax2+bx,

,解得

∴此拋物線的解析式為y= x2+ x.

綜上可知,若△OBC是等腰三角形,此拋物線的函數(shù)關系式為y= x2+ x或y= x2+ x


【解析】(1)過點D作DF⊥x軸于點F,由拋物線的對稱性可知OF=AF,則2AF+AE=4①,由DF∥BE,得到△ADF∽△ABE,根據(jù)相似三角形對應邊成比例得出 = = ,即AE=2AF②,①與②聯(lián)立組成二元一次方程組,解出AE=2,AF=1,進而得到點A的坐標;(2)先由拋物線過原點(0,0),設此拋物線的解析式為y=ax2+bx,再根據(jù)拋物線過原點(0,0)和A點(﹣2,0),求出對稱軸為直線x=﹣1,則由B點橫坐標為﹣4得出C點橫坐標為2,BC=6.再由OB>OC,可知當△OBC是等腰三角形時,可分兩種情況討論:①當OB=BC時,設B(﹣4,y1),列出方程,解方程求出y1的值,將A,B兩點坐標代入y=ax2+bx,運用待定系數(shù)法求出此拋物線的解析式;②當OC=BC時,設C(2,y2),列出方程,解方程求出y2的值,將A,C兩點坐標代入y=ax2+bx,運用待定系數(shù)法求出此拋物線的解析式.
【考點精析】本題主要考查了二次函數(shù)的圖象和二次函數(shù)的性質的相關知識點,需要掌握二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,Rt△ABC中,∠ACB=90°,AB=5,BC=3,點D在邊AB的延長線上,BD=3,過點D作DE⊥AB,與邊AC的延長線相交于點E,以DE為直徑作⊙O交AE于點F.
(1)求⊙O的半徑及圓心O到弦EF的距離;
(2)連接CD,交⊙O于點G(如圖2).求證:點G是CD的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測量某風景區(qū)內一座塔AB的高度,小明分別在塔的對面一樓房CD的樓底C,樓頂D處,測得塔頂A的仰角為45°和30°,已知樓高CD為10m,求塔的高度(結果精確到0.1m).(參考數(shù)據(jù): ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,AB∥DC,∠B=90°,且AB=10,BC=6,CD=2.點E從點B出發(fā)沿BC方向運動,過點E作EF∥AD交邊AB于點F.將△BEF沿EF所在的直線折疊得到△GEF,直線FG、EG分別交AD于點M、N,當EG過點D時,點E即停止運動.設BE=x,△GEF與梯形ABCD的重疊部分的面積為y.

(1)證明△AMF是等腰三角形;
(2)當EG過點D時(如圖(3)),求x的值;
(3)將y表示成x的函數(shù),并求y的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AB=10,sin∠A= ,求BC的長和tan∠B的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(1) (2)

(3) (4)(3x+y)(-y+3x)

(5)2a(a-2a3)-(-3a2)2; (6)(x-3)(x+2)-(x+1)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,E、F分別是邊BC , CD上的點,且EFBDAE、AF分別交BD與點G和點H , BD=12,EF=8.求:
(1) 的值;
(2)線段GH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點DE分別在ABAC上,DEBC , AD=CE . 若ABAC=3:2,BC=10,則DE的長為( 。
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一元二次方程x2-x-3=0的較小根為x1 , 則下面對x1的估計正確的是( 。
A.-2< x1<-1
B.-3< x1<-2
C.2< x1<3
D.-1< x1<0

查看答案和解析>>

同步練習冊答案