【題目】如圖,一次函數(shù)y=k1x﹣1的圖象經(jīng)過(guò)A(0,﹣1)、B(1,0)兩點(diǎn),與反比例函數(shù)y=的圖象在第一象限內(nèi)的交點(diǎn)為M,若△OBM的面積為1.
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)在x軸上是否存在點(diǎn)P,使AM⊥PM?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)x軸上是否存在點(diǎn)Q,使△QBM∽△OAM?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.
【答案】(1)反比例函數(shù)解析式為:y=;(2)P(5,0);(3)Q點(diǎn)坐標(biāo)為:(,0).
【解析】
試題(1)利用已知點(diǎn)B坐標(biāo)代入一次函數(shù)解析式得出答案,再利用△OBM的面積得出M點(diǎn)縱坐標(biāo),再利用相似三角形的判定與性質(zhì)得出M點(diǎn)坐標(biāo)即可得出反比例函數(shù)解析式;
(2)過(guò)點(diǎn)M作PM⊥AM,垂足為M,得出△AOB∽△PMB,進(jìn)而得出BP的長(zhǎng)即可得出答案;
(3)利用△QBM∽△OAM,得出=,進(jìn)而得出OQ的長(zhǎng),即可得出答案.
解:(1)如圖1,過(guò)點(diǎn)M作MN⊥x軸于點(diǎn)N,
∵一次函數(shù)y=k1x﹣1的圖象經(jīng)過(guò)A(0,﹣1)、B(1,0)兩點(diǎn),
∴0=k1﹣1,AO=BO=1,
解得:k1=1,
故一次函數(shù)解析式為:y=x﹣1,
∵△OBM的面積為1,BO=1,
∴M點(diǎn)縱坐標(biāo)為:2,
∵∠OAB=∠MNB,∠OBA=∠NBM,
∴△AOB∽△MNB,
∴==,
則BN=2,
故M(3,2),
則xy=k2=6,
故反比例函數(shù)解析式為:y=;
(2)如圖2,過(guò)點(diǎn)M作PM⊥AM,垂足為M,
∵∠AOB=∠PMB,∠OBA=∠MBP,
∴△AOB∽△PMB,
∴=,
由(1)得:AB==,BM==2,
故=,
解得:BP=4,
故P(5,0);
(3)如圖3,∵△QBM∽△OAM,
∴=,
由(2)可得AM=3,
故=,
解得:QB=,
則OQ=,
故Q點(diǎn)坐標(biāo)為:(,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形中,點(diǎn)是邊上一個(gè)動(dòng)點(diǎn),連結(jié),,點(diǎn),分別為,的中點(diǎn),連結(jié)交直線于點(diǎn)E.
(1)如圖1,當(dāng)點(diǎn)與點(diǎn)重合時(shí),的形狀是_____________________;
(2)當(dāng)點(diǎn)在點(diǎn)M的左側(cè)時(shí),如圖2.
①依題意補(bǔ)全圖2;
②判斷的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上三點(diǎn)M,O,N對(duì)應(yīng)的數(shù)分別是-1,0,3,點(diǎn)P為數(shù)軸上任意點(diǎn),其對(duì)應(yīng)的數(shù)為x.如果點(diǎn)P以每分鐘1個(gè)單位長(zhǎng)度的速度從點(diǎn)O向左運(yùn)動(dòng),同時(shí)點(diǎn)M和點(diǎn)N分別以每分鐘2個(gè)單位長(zhǎng)度和每分鐘3個(gè)單位長(zhǎng)度的速度也向左運(yùn)動(dòng).設(shè)t分鐘時(shí)P點(diǎn)到點(diǎn)M、點(diǎn)N的距離相等,則t的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了培養(yǎng)學(xué)生的閱讀習(xí)慣,某校開展了“讀好書,助成長(zhǎng)”系列活動(dòng),并準(zhǔn)備購(gòu)置一批圖書,購(gòu)書前,對(duì)學(xué)生喜歡閱讀的圖書類型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計(jì)圖,如圖所示,根據(jù)統(tǒng)計(jì)圖所提供的信息,回答下列問(wèn)題:
(1)本次調(diào)查共抽查了 名學(xué)生;
(2)兩幅統(tǒng)計(jì)圖中的m= ,n= .
(3)已知該校共有960名學(xué)生,請(qǐng)估計(jì)該校喜歡閱讀“A”類圖書的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景
如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形。
類比研究
如圖2,在正△ABC的內(nèi)部,作∠BAD=∠CBE=∠ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(diǎn)(D,E,F(xiàn)三點(diǎn)不重合)。
(1)△ABD,△BCE,△CAF是否全等?如果是,請(qǐng)選擇其中一對(duì)進(jìn)行證明;
(2)△DEF是否為正三角形?請(qǐng)說(shuō)明理由;
(3)進(jìn)一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè),,,請(qǐng)?zhí)剿?/span>,,滿足的等量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=9,AD=4.E為CD邊上一點(diǎn),CE=6.點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度沿著邊BA向終點(diǎn)A運(yùn)動(dòng),連接PE.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)求AE的長(zhǎng);
(2)當(dāng)t為何值時(shí),△PAE為直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某風(fēng)景區(qū)計(jì)劃在綠化區(qū)域種植銀杏樹,現(xiàn)甲、乙兩家有相同的銀杏樹苗可供選擇,其具體銷售方案如下:
甲 | 乙 | ||
購(gòu)樹苗數(shù)量 | 銷售單價(jià) | 購(gòu)樹苗數(shù)量 | 銷售單價(jià) |
不超過(guò)500棵時(shí) | 800元/棵 | 不超過(guò)1000棵時(shí) | 800元/棵 |
超過(guò)500棵的部分 | 700元/棵 | 超過(guò)1000棵的部分 | 600元/棵 |
設(shè)購(gòu)買銀杏樹苗x棵,到兩家購(gòu)買所需費(fèi)用分別為y甲元、y乙元
(1)該風(fēng)景區(qū)需要購(gòu)買800棵銀杏樹苗,若都在甲家購(gòu)買所要費(fèi)用為 元,若都在乙家購(gòu)買所需費(fèi)用為 元;
(2)當(dāng)x>1000時(shí),分別求出y甲、y乙與x之間的函數(shù)關(guān)系式;
(3)如果你是該風(fēng)景區(qū)的負(fù)責(zé)人,購(gòu)買樹苗時(shí)有什么方案,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,以△ABC的邊AB為直徑作⊙O,交AC邊于點(diǎn)E,BD平分∠ABE交AC于F,交⊙O于點(diǎn)D,且∠BDE=∠CBE.
(1)求證:BC是⊙O的切線;
(2)延長(zhǎng)ED交直線AB于點(diǎn)P,如圖2,若PA=AO,DE=3,DF=2,求的值及AO的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com