【題目】我們知道1+2+3+…+=,則1+2+3+…+10= ___________ .
[問(wèn)題提出] 那么 的結(jié)果等于多少呢?
[閱讀理解] 在圖1所示的三角形數(shù)陣中,第1行圓圈中的數(shù)為1,即12 ;第2行兩個(gè)圓圈中數(shù)的和為2+2,即22;......;第n行n個(gè)圓圈中數(shù)的和為n+n+n即 n2;這樣,該三角形數(shù)陣中共有____ 個(gè)圓圈,所有圓圈中數(shù)的和可表示為_________________ .
圖1
[規(guī)律探究] 將三角形數(shù)陣經(jīng)兩次旋轉(zhuǎn)可得如圖2所示的三角形數(shù)陣,觀察這三個(gè)三角形數(shù)陣各行同一位置圓圈中的數(shù)(如第n-1行的第一個(gè)圓圈中的數(shù)分別為n-1,2,n)發(fā)現(xiàn)每個(gè)位置上三個(gè)圓圈中的數(shù)的和均為______________.由此可得,這三個(gè)三角形數(shù)陣所有圓圈中數(shù)的總和為:
3( )=_________________.因此, =__________.
圖2
[問(wèn)題解決]
(1).根據(jù)以上規(guī)律可得 __________________.
(2).試計(jì)算 ,請(qǐng)寫(xiě)出計(jì)算步驟.
【答案】55;;;();;;(1)7;(2)2485
【解析】
把n=10代入1+2+3+…+=,即可求出1+2+3+…+10的值;
[閱讀理解]:由圖1可知,共有1+2+3+…+n=個(gè)圓圈,所有圓圈中數(shù)的和可表示為;
[規(guī)律探究]:由圖2知,每個(gè)位置上三個(gè)圓圈中的數(shù)的和均為.由此可得,這三個(gè)三角形數(shù)陣所有圓圈中數(shù)的總和為:3( )=每個(gè)位置上三個(gè)圓圈中的數(shù)的和()×位置的個(gè)數(shù),因此, =;
[問(wèn)題解決]:(1)先化簡(jiǎn)把,然后把n=10代入就算即可;(2)用()減去()即可求出結(jié)論.
當(dāng)n=10時(shí),
1+2+3+…+==55;
[閱讀理解]:由圖1可知,共有1+2+3+…+n=個(gè)圓圈,所有圓圈中數(shù)的和可表示為;
[規(guī)律探究]:由圖2知,每個(gè)位置上三個(gè)圓圈中的數(shù)的和均為.由此可得,這三個(gè)三角形數(shù)陣所有圓圈中數(shù)的總和為:3( )=,因此, =;
[問(wèn)題解決]:(1)∵,
把n=10代入得,
原式==7;
(2)
=()-()
=
=
=2485.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一多邊形草坪,在市政建設(shè)設(shè)計(jì)圖紙上的面積為300cm2,其中一條邊的長(zhǎng)度為5cm.經(jīng)測(cè)量,這條邊的實(shí)際長(zhǎng)度為15m,則這塊草坪的實(shí)際面積是( 。
A. 100m2 B. 270m2 C. 2700m2 D. 90000m2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)庫(kù)存一批舊桌凳,準(zhǔn)備修理后捐助貧困山區(qū)學(xué)校.現(xiàn)有甲、乙兩個(gè)木工小組都想承攬這項(xiàng)業(yè)務(wù),經(jīng)協(xié)商得知:甲小組單獨(dú)修理這批桌凳比乙小組多用20天,乙小組每天比甲小組多修8套,甲小組每天修16套桌凳;學(xué)校每天需付甲小組修理費(fèi)80元,付乙小組120元.
(1)求甲、乙兩個(gè)木工小組單獨(dú)修理這批桌凳各需多少天.
(2)在修理桌凳的過(guò)程中,學(xué)校要委派一名維修工進(jìn)行質(zhì)量監(jiān)督,并由學(xué)校負(fù)擔(dān)他每天10元的生活補(bǔ)助.現(xiàn)有下面三種修理方案供選擇:
①由甲小組單獨(dú)修理;②由乙小組單獨(dú)修理;③由甲、乙兩小組合作修理.
你認(rèn)為哪種方案既省時(shí)又省錢(qián)?試比較說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知直線y=3x分別與雙曲線y=、y=(x>0)交于P、Q兩點(diǎn),且OP=2OQ.
(1)求k的值.
(2)如圖2,若點(diǎn)A是雙曲線y= 上的動(dòng)點(diǎn),AB∥x軸,AC∥y軸,分別交雙曲線y=(x>0)于點(diǎn)B、C,連接BC.請(qǐng)你探索在點(diǎn)A運(yùn)動(dòng)過(guò)程中,△ABC的面積是否變化?若不變,請(qǐng)求出△ABC的面積;若改變,請(qǐng)說(shuō)明理由;
(3)如圖3,若點(diǎn)D是直線y=3x上的一點(diǎn),請(qǐng)你進(jìn)一步探索在點(diǎn)A運(yùn)動(dòng)過(guò)程中,以點(diǎn)A、B、C、D為頂點(diǎn)的四邊形能否為平行四邊形?若能,求出此時(shí)點(diǎn)A的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠一周計(jì)劃每日生產(chǎn)某產(chǎn)品100噸,由于工人實(shí)行輪休,每日上班人數(shù)不一定相等,實(shí)際每日生產(chǎn)量與計(jì)劃量相比情況如下表(以計(jì)劃量為標(biāo)準(zhǔn),增加的噸數(shù)記為正數(shù),減少的噸數(shù)記為負(fù)數(shù))
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減/噸 | ﹣1 | +3 | ﹣2 | +4 | +7 | ﹣5 | ﹣10 |
(1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少?lài)崳?/span>
(2)本周總生產(chǎn)量是多少?lài)?比原?jì)劃增加了還是減少了?增減數(shù)為多少?lài)崳?/span>
(3)若本周總生產(chǎn)的產(chǎn)品全部由35輛貨車(chē)一次性裝載運(yùn)輸離開(kāi)工廠,則平均每輛貨車(chē)大約需裝載多少?lài)崳浚ńY(jié)果精確到0.01噸)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩地盛產(chǎn)柑桔,地有柑桔200噸,地有柑桔300噸.現(xiàn)將這些柑桔運(yùn)到C、D兩個(gè)冷藏倉(cāng)庫(kù),已知倉(cāng)庫(kù)可儲(chǔ)存240噸,倉(cāng)庫(kù)可儲(chǔ)存260噸;從地運(yùn)往C、D兩處的費(fèi)用分別為每噸20元和25元,從地運(yùn)往C、D兩處的費(fèi)用分別為每噸15元和18元.設(shè)從地運(yùn)往倉(cāng)庫(kù)的柑桔重量為x噸,A、B兩地運(yùn)往兩倉(cāng)庫(kù)的柑桔運(yùn)輸費(fèi)用分別為yA元和yB元.
(1)請(qǐng)?zhí)顚?xiě)下表后分別求出yA,yB之間的函數(shù)關(guān)系式,并寫(xiě)出定義域;
C | D | 總計(jì) | |
A | x噸 | 200噸 | |
B | 300噸 | ||
總計(jì) | 240噸 | 260噸 | 500噸 |
(2)試討論A,B兩地中,哪個(gè)運(yùn)費(fèi)較少;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(0,3),點(diǎn)B在x軸上,將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△AEF,點(diǎn)O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)E、F.
(1)若點(diǎn)B的坐標(biāo)是(﹣4,0),請(qǐng)?jiān)趫D中畫(huà)出△AEF,并寫(xiě)出點(diǎn)E、F的坐標(biāo).
(2)當(dāng)點(diǎn)F落在x軸的上方時(shí),試寫(xiě)出一個(gè)符合條件的點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下面三行數(shù):
取每一行的第n個(gè)數(shù),依次記為x、y、z.如上圖中,當(dāng)n=2時(shí),x=﹣4,y=﹣3,z=2.
(1)當(dāng)n=7時(shí),請(qǐng)直接寫(xiě)出x、y、z的值,并求這三個(gè)數(shù)中最大的數(shù)與最小的數(shù)的差;
(2)已知n為偶數(shù),且x、y、z這三個(gè)數(shù)中最大的數(shù)與最小的數(shù)的差為384,求n的值;
(3)若m=x+y+z,則x、y、z這三個(gè)數(shù)中最大的數(shù)與最小的數(shù)的差為 (用含m的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中錯(cuò)誤的有( 。﹤(gè)
①絕對(duì)值相等的兩數(shù)相等.②若a,b互為相反數(shù),則=﹣1.③如果a大于b,那么a的倒數(shù)小于b的倒數(shù).④任意有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表示.⑤x2﹣2x﹣33x3+25是五次四項(xiàng).⑥兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小.⑦一個(gè)數(shù)的相反數(shù)一定小于或等于這個(gè)數(shù).⑧正數(shù)的任何次冪都是正數(shù),負(fù)數(shù)的任何次冪都是負(fù)數(shù).
A. 4個(gè) B. 5個(gè) C. 6個(gè) D. 7個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com