(2006•孝感)幾何課本第三冊(cè)復(fù)習(xí)題七中有這樣一道幾何題:以Rt△ABC的直角邊AC為直徑作圓,交斜邊AB于點(diǎn)D,過點(diǎn)D作圓的切線.求證:這條切線平分另一條直角邊BC.(不必證明)
現(xiàn)將上述習(xí)題改變成如下問題,請(qǐng)你解答:
如圖,以Rt△ABC的直角邊AC為直徑作⊙O,交斜邊AB于點(diǎn)D,E為BC邊的中點(diǎn),連DE.
(1)判斷DE是否為⊙O的切線,并證明你的結(jié)論.
(2)當(dāng)AD:DB=9:16時(shí),DE=8cm時(shí),求⊙O的半徑R.

【答案】分析:(1)連接OE,OD,根據(jù)全等三角形的判定,易得△OEC≌Rt△ODC,進(jìn)而可得∠ODC=∠OCE=90°,故DE是⊙O的切線.
(2)設(shè)AD=9x(x>O),BD=16x,根據(jù)切割線定理可得關(guān)系式,代入數(shù)據(jù)可得關(guān)于x的方程,解可得答案.
解答:解:(1)DE是⊙O的切線,
證明:連接OE,OD;
∵在Rt△CDB,E為BC邊的中點(diǎn),
∴CE=DE.
∵OD=OC,OE是公共邊,
∴△OEC≌Rt△ODC.
∴∠ODC=∠OCE=90°.
∴DE是⊙O的切線.

(2)設(shè)AD=9x(x>0),BD=16x,
由切割線定理有BC2=BD•AB,
∴x=(負(fù)值舍去).
∴AB=20,AC=12.
∴⊙O的半徑R=6(cm).
點(diǎn)評(píng):本題考查切線的判定,線段長度的求法,要求學(xué)生掌握常見的解題方法,并能結(jié)合圖形選擇簡單的方法解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2006•孝感)如圖,已知二次函數(shù)y=x2+bx+c的圖象與x軸只有一個(gè)公共點(diǎn)M,與y軸的交點(diǎn)為A,過點(diǎn)A的直線y=x+c與x軸交于點(diǎn)N,與這個(gè)二次函數(shù)的圖象交于點(diǎn)B.
(1)求點(diǎn)A、B的坐標(biāo)(用含b、c的式子表示);
(2)當(dāng)S△BMN=4S△AMN時(shí),求二次函數(shù)的解析式;
(3)在(2)的條件下,設(shè)點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),那么是否存在這樣的點(diǎn)P,使得以P、A、M為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)寫出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖北省孝感市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•孝感)如圖,已知二次函數(shù)y=x2+bx+c的圖象與x軸只有一個(gè)公共點(diǎn)M,與y軸的交點(diǎn)為A,過點(diǎn)A的直線y=x+c與x軸交于點(diǎn)N,與這個(gè)二次函數(shù)的圖象交于點(diǎn)B.
(1)求點(diǎn)A、B的坐標(biāo)(用含b、c的式子表示);
(2)當(dāng)S△BMN=4S△AMN時(shí),求二次函數(shù)的解析式;
(3)在(2)的條件下,設(shè)點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),那么是否存在這樣的點(diǎn)P,使得以P、A、M為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)寫出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2006•孝感)已知函數(shù)y=在第一象限的圖象如圖所示,點(diǎn)P為圖象上的任意一點(diǎn),過P作PA⊥x軸于A,PB⊥y軸于B,則△APB的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省寧波市北侖區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:選擇題

(2006•重慶)(課改)現(xiàn)有A、B兩枚均勻的小立方體(立方體的每個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6).用小莉擲A立方體朝上的數(shù)字為x小明擲B立方體朝上的數(shù)字為y來確定點(diǎn)P(x,y),那么它們各擲一次所確定的點(diǎn)P落在已知拋物線y=-x2+4x上的概率為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案