【題目】如圖1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,點(diǎn)E在AB上,F(xiàn)是線段BD的中點(diǎn),連接CE、FE.
(1)若AD=3 ,BE=4,求EF的長;
(2)求證:CE= EF;
(3)將圖1中的△AED繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使AED的一邊AE恰好與△ACB的邊AC在同一條直線上(如圖2),連接BD,取BD的中點(diǎn)F,問(2)中的結(jié)論是否仍然成立,并說明理由.
【答案】
(1)
解:∵∠AED=90°,AE=DE,AD=3 ,
∴AE=DE=3,
在Rt△BDE中,
∵DE=3,BE=4,
∴BD=5,
又∵F是線段BD的中點(diǎn),
∴EF= BD=2.5
(2)
解:如圖1,連接CF,線段CE與FE之間的數(shù)量關(guān)系是CE= FE;
解法1:∵∠AED=∠ACB=90°
∴B、C、D、E四點(diǎn)共圓
且BD是該圓的直徑,
∵點(diǎn)F是BD的中點(diǎn),
∴點(diǎn)F是圓心,
∴EF=CF=FD=FB,
∴∠FCB=∠FBC,∠ECF=∠CEF,
由圓周角定理得:∠DCE=∠DBE,
∴∠FCB+∠DCE=∠FBC+∠DBE=45°
∴∠ECF=45°=∠CEF,
∴△CEF是等腰直角三角形,
∴CE= EF.
解法2:∵∠BED=∠AED=∠ACB=90°,
∵點(diǎn)F是BD的中點(diǎn),
∴CF=EF=FB=FD,
∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,
∴∠DFE=2∠ABD,
同理∠CFD=2∠CBD,
∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,
即∠CFE=90°,
∴CE= EF.
(3)
解:解法1:如圖2﹣1,連接CF,延長EF交CB于點(diǎn)G,
∵∠ACB=∠AED=90°,
∴DE∥BC,
∴∠EDF=∠GBF,
在△EDF和△GBF中,
,
∴△EDF≌△GBF,
∴EF=GF,BG=DE=AE,
∵AC=BC,
∴CE=CG,
∴∠EFC=90°,CF=EF,
∴△CEF為等腰直角三角形,
∴∠CEF=45°,
∴CE= FE;
解法2:如圖2﹣2,連結(jié)CF、AF,
∵∠BAD=∠BAC+∠DAE=45°+45°=90°,
又∵點(diǎn)F是BD的中點(diǎn),
∴FA=FB=FD,
在△ACF和△BCF中,
,
∴△ACF≌△BCF,
∴∠ACF=∠BCF= ∠ACB=45°,
∵FA=FB,CA=CB,
∴CF所在的直線垂直平分線段AB,
同理,EF所在的直線垂直平分線段AD,
又∵DA⊥BA,
∴EF⊥CF,
∴△CEF為等腰直角三角形,
∴CE= EF.
【解析】(1)由AE=DE,∠AED=90°,AD=3 ,可求得AE=DE=3,在Rt△BDE中,由DE=3,BE=4,可知BD=5,又F是線段BD的中點(diǎn),所以EF= BD=2.5;(2)連接CF,直角△DEB中,EF是斜邊BD上的中線,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,CF= EF;(3)思路同(1).連接CF,延長EF交CB于點(diǎn)G,先證△EFC是等腰三角形,要證明EF=FG,需要證明△DEF和△FGB全等.由全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么這個(gè)三角形就是個(gè)等腰直角三角形,因此得出結(jié)論.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解圖形的旋轉(zhuǎn)(每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度,任意一對對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.旋轉(zhuǎn)的方向、角度、旋轉(zhuǎn)中心是它的三要素),還要掌握旋轉(zhuǎn)的性質(zhì)(①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是2015年12月月歷.
(1)如圖,用一正方形框在表中任意框往4個(gè)數(shù),記左上角的一個(gè)數(shù)為x,則另三個(gè)數(shù)用含x的式子表示出來,從小到大依次是 , , .
(2)在表中框住四個(gè)數(shù)之和最小記為a1,和最大記為a2,則a1+a2= .
(3)當(dāng)(1)中被框住的4個(gè)數(shù)之和等于76時(shí),x的值為多少?
(4)在(1)中能否框住這樣的4個(gè)數(shù),它們的和等于92?若能,則求出x的值;若不能,則說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD的邊BC上的任意一點(diǎn),連接AP,作DE⊥AP,垂足是E,BF⊥AP,垂足是F.求證:DE=BF+EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角△ABC中,∠A=90°,∠B=30°,AC=4,以A為圓心,AC長為半徑畫四分之一圓,則圖中陰影部分的面積是(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市自來水公司為了鼓勵(lì)市民節(jié)約用水,采取分段收費(fèi)標(biāo)準(zhǔn). 若某戶居民每月應(yīng)繳水費(fèi)y(元)與用水量x(噸)的函數(shù)圖象如圖所示,
(1)分別寫出x≤5和x>5的函數(shù)解析式;
(2)觀察函數(shù)圖象,利用函數(shù)解析式,回答自來水公司采取的收費(fèi)標(biāo)準(zhǔn);
(3)若某戶居民六月交水費(fèi)31元,則用水多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目.
如圖1,在∠AOB的內(nèi)部有一條射線OC把∠AOB分成兩個(gè)角,射線OM、ON分別平分∠AOC、∠BOC,試探究∠MON與∠AOB之間的數(shù)量關(guān)系,并說明理由.
小敏與同桌小聰討論后,進(jìn)行了如下解答:
(1)特殊情況,探索結(jié)論:
①請你在下表中填上當(dāng)∠AOB為60°、90°、120°時(shí)∠MON的大小:
∠AOB的度數(shù) | 60° | 90° | 120° |
∠MON的度數(shù) |
|
|
|
②探索發(fā)現(xiàn):無論∠AOB的度數(shù)是多少,∠MON與∠AOB的數(shù)量關(guān)系是不變的,請你直接寫出結(jié)論:
∠MON ∠AOB.
(2)特例啟發(fā),解答題目:
如圖2,如果∠AOB=α,請你求∠MON的大小(用α表示).
(3)拓展結(jié)論,設(shè)計(jì)新題:
如圖3,把一張報(bào)紙的一角斜折過去,使A點(diǎn)落在E點(diǎn)處,BC為折痕,BD是∠EBM的平分線,求∠CBD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列算式,你發(fā)現(xiàn)了什么規(guī)律?
12=;12+22=;12+22+32=;12+22+32+42=;…
①根據(jù)你發(fā)現(xiàn)的規(guī)律,計(jì)算下面算式的值;12+22+32+42+52=____________;
②請用一個(gè)含n的算式表示這個(gè)規(guī)律:12+22+32…+n2=___________;
③根據(jù)你發(fā)現(xiàn)的規(guī)律,計(jì)算下面算式的值:512+522+…+992+1002=____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校實(shí)施課程改革,為初三學(xué)生設(shè)置了A,B,C,D,E,F(xiàn)共六門不同的拓展性課程,現(xiàn)隨機(jī)抽取若干學(xué)生進(jìn)行了“我最想選的一門課”調(diào)查,并將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖表(不完整)
選修課 | A | B | C | D | E | F |
人數(shù) | 20 | 30 |
根據(jù)圖標(biāo)提供的信息,下列結(jié)論錯(cuò)誤的是( )
A. 這次被調(diào)查的學(xué)生人數(shù)為200人 B. 扇形統(tǒng)計(jì)圖中E部分扇形的圓心角為72°
C. 被調(diào)查的學(xué)生中最想選F的人數(shù)為35人 D. 被調(diào)查的學(xué)生中最想選D的有55人
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com