【題目】某課外研究小組為了解學生參加課外體育活動的情況,采取抽樣調(diào)查的方法從籃球、排球、乒乓球、足球及其他等五個方面調(diào)查了若干名同學的興趣愛好(每人只能選其中一項),并將調(diào)查結(jié)果繪制成統(tǒng)計圖,請根據(jù)圖中提供的信息解答下列問題:

(1)在這次考察中一共調(diào)查了   名學生,請補全條形統(tǒng)計圖;

(2)被調(diào)查同學中恰好有5名學來自初一12班,其中有2名同學選擇了籃球,有3名同學選擇了乒乓球,曹老師打算從這5名同學中選擇兩同學了解他們對體育社團的看法,請用列表法或畫樹狀圖法,求選出的兩人恰好為一人選擇籃球、一人選擇乒乓球的概率.

【答案】160,補圖見解析;2)抽到一藍一乒的概率為

【解析】試題分析:(1)根據(jù)排球的百分比和頻數(shù)可求總數(shù);

2)用列表法求出總的事件所發(fā)生的數(shù)目,再根據(jù)概率公式即可求出剛好抽到一籃一乒的概率.

試題解析:(1∵6÷10%=60,這次考查中一共調(diào)查了60名學生.該校喜歡足球的學生有60×20%=12補全統(tǒng)計圖如圖

2)根據(jù)題意畫圖如下

由圖可知總有20種等可能性結(jié)果,其中抽到一籃一乒的情況有12所以抽到一籃一乒的概率為P(一籃一乒)=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,點分別在上,且,將射線繞點逆時針旋轉(zhuǎn)得到,旋轉(zhuǎn)角為,作點關于直線的對稱點,畫直線于點,連接,,有下列結(jié)論:

的大小隨著的變化而變化;

③當時,四邊形為菱形; 面積的最大值為;

其中正確的是_____________.(把你認為正確結(jié)論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(3分)觀察下列圖形規(guī)律:當n= 時,圖形“●”的個數(shù)和的個數(shù)相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,直徑CD垂直于不過圓心O的弦AB,垂足為點N,連接AC,點EAB上,且AE=CE,過點B作⊙O的切線交EC的延長線于點P.

(1)求證:AC2=AEAB;

(2)試判斷PBPE是否相等,并說明理由;

(3)設⊙O的半徑為4,NOC的中點,點Q在⊙O上,求線段PQ的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某客運公司的特快巴士與普通巴士同時從甲地出發(fā),以各自的速度勻速向乙地行駛,普通巴士到達乙地后停止,特快巴士到達乙地停留45分鐘后,按原路以另一速度勻速返回甲地,已知兩輛巴士分別距乙地的路程y(千米)與行駛時間x(小時)之間的函數(shù)圖象如圖所示.求普通巴士到達乙地時,特快巴士與甲地之間的距離為_____千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′, C的對應點 C′恰好落在CB的延長線上,邊AB交邊 C′D′于點E.

(1)求證:BC=BC′;

(2) AB=2,BC=1,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠一個車間工人計劃一周平均每天生產(chǎn)零件300個,實際每天生產(chǎn)量與計劃每天生產(chǎn)量相比有誤差.如表是這個車間工人在某一周每天的零件生產(chǎn)情況,超計劃生產(chǎn)量為正、不足計劃生產(chǎn)量為負.(單位:個)

時間

周一

周二

周三

周四

周五

周六

周日

誤差

+10

15

6

+12

10

+18

11

(1)生產(chǎn)零件數(shù)量最少的一天比最多的一天少生產(chǎn)______個零件;

(2)若生產(chǎn)一個零件可得利潤5元,則這個車間的工人在這一周為工廠一共帶來了多少利潤?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了加強公民的節(jié)水意識,合理利用水資源,某市采用價格調(diào)控手段達到節(jié)水的目的.該市自來水收費價格見價目表.

注:水費按月結(jié)算,不足1立方米的不收費.若某戶居民1月份用水8立方米,則應交水費:2×64×(86)20()

(1)若該戶居民2月份交水費16元,計算該戶居民2月份的用水量;

(2)若該戶居民3月份用水12.5立方米,則應交水費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,對角線AC,BD交于點O,EAD上任意一點,連接EO并延長,交BC于點F,連接AF,CE.

1)求證:四邊形AFCE是平行四邊形;

2)若,°,.

①直接寫出的邊BC上的高h的值;

②當點E從點D向點A運動的過程中,下面關于四邊形AFCE的形狀的變化的說法中,正確的是

A.平行四邊形矩形平行四邊形菱形平行四邊形

B.平行四邊形矩形平行四邊形正方形平行四邊形

C.平行四邊形菱形平行四邊形菱形平行四邊形

D.平行四邊形菱形平行四邊形矩形平行四邊形

查看答案和解析>>

同步練習冊答案