【題目】如圖,拋物線y=﹣x2+bx+c過等腰Rt△OAB的A,B兩點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),直角頂點(diǎn)A(0,3).
(1)求b,c的值.
(2)P是AB上方拋物線上的一點(diǎn),作PQ⊥AB交OB于點(diǎn)Q,連接AP,是否存在點(diǎn)P,使四邊形APQO是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1);(2)當(dāng)P(2,5)時(shí),四邊形APQO是平行四邊形
【解析】
(1)根據(jù)題意得到點(diǎn)B的坐標(biāo),把A,B的坐標(biāo)代入二次函數(shù)解析式,列出關(guān)于系數(shù)b、c的方程組,通過解方程組可以求得它們的值;
(2)由條件可知OA∥PQ,則PQ=3時(shí),OAPQ為平行四邊形,設(shè)P(m,-m2+3m+3),Q(m,m),可得關(guān)于m的方程,求出m的值即可求解.
解:(1)∵A(0,3),等腰Rt△OAB,
∴AB=3=OA,
∴B(3,3),
將點(diǎn)A、B的坐標(biāo)代入y=﹣x2+bx+c得:
,
∴,
(2)存在,
∵B(3,3),
∴OB的解析式為y=x,
∵y=﹣x2+3x+3,
設(shè)P(m,﹣m2+3m+3),Q(m,m),
∵PQ⊥AB,OA⊥AB,
∴OA∥PQ,
若四邊形APQO是平行四邊形,
∴PQ=﹣m2+3m+3﹣m=3,
解得m=0(舍去),m=2,
當(dāng)m=2時(shí),y=﹣4+6+3=5,
∴p(2,5),
即當(dāng)P(2,5)時(shí),四邊形APQO是平行四邊形.
故答案為:(1);(2)當(dāng)P(2,5)時(shí),四邊形APQO是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖:分別以△ABC的各邊為邊,在BC邊的同側(cè)作等邊三角形ABE、等邊三角形CBD和等邊三角形ACF,連結(jié)DE,DF.
(1)試說明四邊形DEAF為平行四邊形.
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形DEAF為矩形?并說明理由;
(3)當(dāng)△ABC滿足什么條件時(shí),四邊形DEAF為菱形.直接寫出答案 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市正在開展“食品安全城市”創(chuàng)建活動(dòng),為了解學(xué)生對(duì)食品安全知識(shí)的了解情況,學(xué)校從2019年1月﹣5月等月隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查(被調(diào)查學(xué)生每人只能選一項(xiàng)),將調(diào)查站果按照“A非常了解、B了解、C了解較少、D不了解”四類情況分別選行統(tǒng)計(jì),并繪制成圖1、圖2兩幅統(tǒng)計(jì)圖、根據(jù)統(tǒng)計(jì)圖提供的信息解答下列問題:
(1) 月抽取的調(diào)查人數(shù)最少: 月抽取的調(diào)查人數(shù)中男生、女生人數(shù)相等;
(2)求圖2中“D不了解”在扇形圖中所占的圓心角α的度數(shù):
(3)若該校2019年5月份在校學(xué)生3600名,請(qǐng)你估計(jì)對(duì)食品安全知識(shí)“A非常了解和B了解”的學(xué)生總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,我們不妨將橫坐標(biāo),縱坐標(biāo)均為整數(shù)的點(diǎn)稱之為“中國(guó)結(jié)”。
(1)求函數(shù)y=x+2的圖像上所有“中國(guó)結(jié)”的坐標(biāo);
(2)求函數(shù)y=(k≠0,k為常數(shù))的圖像上有且只有兩個(gè)“中國(guó)結(jié)”,試求出常數(shù)k的值與相應(yīng)“中國(guó)結(jié)”的坐標(biāo);
(3)若二次函數(shù)y=(k為常數(shù))的圖像與x軸相交得到兩個(gè)不同的“中國(guó)結(jié)”,試問該函數(shù)的圖像與x軸所圍成的平面圖形中(含邊界),一共包含有多少個(gè)“中國(guó)結(jié)”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,過對(duì)角線BD上一點(diǎn)P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,則SAEPH=( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線L上有三個(gè)正方形a,b,c,若a,c的面積分別為1和9,則b的面積為( )
A.8 B.9 C.10 D.11
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸、軸分別交于兩點(diǎn),拋物線經(jīng)過點(diǎn),與軸另一交點(diǎn)為,頂點(diǎn)為.
(1)求拋物線的解析式;
(2)在軸上找一點(diǎn),使的值最小,求的最小值;
(3)在拋物線的對(duì)稱軸上是否存在一點(diǎn),使得?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知PA與⊙O相切于點(diǎn)A,B、C是⊙O上的兩點(diǎn)
(1)如圖①,PB與⊙O相切于點(diǎn)B,AC是⊙O的直徑若∠BAC=25°;求∠P的大小
(2)如圖②,PB與⊙O相交于點(diǎn)D,且PD=DB,若∠ACB=90°,求∠P的大小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,E是AD上的一點(diǎn),點(diǎn)P從點(diǎn)B沿折線BE﹣ED﹣DC,運(yùn)動(dòng)到點(diǎn)C時(shí)停止;點(diǎn)Q從點(diǎn)B沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,速度均為每秒1個(gè)單位長(zhǎng)度,如果點(diǎn)P,Q同時(shí)開始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t,△BPQ的面積為y,已知y與t的函數(shù)圖象如圖2所示,以下結(jié)論:①BC=10; ②cos∠ABE=;③當(dāng)t=12時(shí),△BPQ是等腰三角形;④當(dāng)14≤t≤20時(shí),y=110﹣5t,其中正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com