【題目】如圖,矩形的對角線交于點,點是矩形外的一點,其中。

1)求證:四邊形是菱形;

2)若,連接交于于點,連接,求證:平分。

【答案】1)見解析;(2)見解析.

【解析】

(1)由矩形可知OA=OB,由AEBD,BEAC,即可得出結(jié)論;

(2)利用矩形和菱形的性質(zhì)先證△COF≌△EBF,得到OF=BF,再求得∠AOB=60°,利用有一個角是60°的等腰三角形是等邊三角形,得到△AOB為等邊三角形,最后利用三線合一的性質(zhì)得到AF平分∠BAO

證明:(1四邊形是矩形,

,

,

四邊形是平行四邊形,

四邊形是菱形;

2四邊形是菱形,

,

,

四邊形是矩形,

,

,

,

,

,

,

是等邊三角形,

,

平分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 滿足社區(qū)居民健身的需要,市政府準(zhǔn)備采購若干套健身器材免費(fèi)提供給社區(qū),經(jīng)考察,公司兩種型號的健身器可供選擇.

(1)松公司2015年每套健身器的售價為萬元,經(jīng)過連續(xù)兩年降價,2017年每售價 萬元,求每型健身器年平均下降

(2)2017年市政府經(jīng)過招標(biāo),決定年內(nèi)采購安裝松公司兩種型號的健身器材,采購專項費(fèi)總計不超過萬元,采購合同規(guī)定:每套健身器售價為萬元,每套健身器售價 萬元.

型健身器最多可購買多少套?

安裝完成后,若每套型和健身器一年的養(yǎng)護(hù)費(fèi)分別是購買價的 .政府計劃支出 萬元進(jìn)行養(yǎng)護(hù).問該計劃支出能否滿足一年的養(yǎng)護(hù)需要?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,過點的直線,邊上一點,過點,交直線于點,垂足為點,連接.

1)求證:;

2)如圖,當(dāng)點中點時,連接.

①四邊形是什么特殊四邊形?說明你的理由;

②當(dāng) 時,四邊形是正方形.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是( )

A.單項式 的系數(shù)是-2,次數(shù)是3B.單項式a的系數(shù)是0,次數(shù)是0

C.是三次三項式,常數(shù)項是1D.單項式的次數(shù)是2,系數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點

(1)已知點M,N是線段AB的勾股分割點,若AM=3,MN=4,則BN的長為__________

(2)已知點C是線段AB上的一定點,其位置如圖2所示,請在BC上畫一點D,使C,D是線段AB的勾股分割點(要求尺規(guī)作圖,不寫畫法,保留作圖痕跡,畫出一種情形即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點A,OB依次在直線MN上.將射線OA繞點O沿順時針方向以每秒18°的速度旋轉(zhuǎn),同時射線OB繞點O沿順時針方向以每秒的速度旋轉(zhuǎn)(如圖2).設(shè)旋轉(zhuǎn)時間為t0≤t≤30,單位秒).

1)當(dāng)t10時,∠AOB   °;

2)在旋轉(zhuǎn)過程中是否存在這樣的t,使得射線OM是由射線OB、射線OA組成的角(指大于而不超過180°的角)的平分線?如果存在,請求出t的值;如果不存在,請說明理由.

3)在運(yùn)動過程中,當(dāng)∠AOB45°時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C、D是線段AB上兩點,已知AC:CD:DB=1:2:3,M、N分別為AC、DB的中點,且AB=12cm,

(1)求線段CD的長;

(2)求線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于O.OF是∠BOD的平分線,OEOF.

(1)若∠BOE比∠DOF38°,求∠DOF和∠AOC的度數(shù);

(2)試問∠COE與∠BOE之間有怎樣的大小關(guān)系?請說明理由.

(3)BOE的余角是   ,BOE的補(bǔ)角是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,過點DDEAB于點E,作DFBC于點F,連接EF求證:(1ADE≌△CDF;(2BEF=BFE

查看答案和解析>>

同步練習(xí)冊答案