(2012•濟(jì)寧)如圖,AD是△ABC的角平分線,過(guò)點(diǎn)D作DE∥AB,DF∥AC,分別交AC、AB于點(diǎn)E和F.
(1)在圖中畫(huà)出線段DE和DF;
(2)連接EF,則線段AD和EF互相垂直平分,這是為什么?
分析:(1)根據(jù)題目要求畫(huà)出線段DE、DF即可;
(2)首先證明四邊形AEDF是平行四邊形,再證明∠EAD=∠EDA,根據(jù)等角對(duì)等邊可得EA=ED,由有一組鄰邊相等的平行四邊形是菱形可證明四邊形AEDF是菱形,再根據(jù)菱形的性質(zhì)可得線段AD和EF互相垂直平分.
解答:解(1)如圖所示;

(2)∵DE∥AB,DF∥AC,
∴四邊形AEDF是平行四邊形,
∵AD是△ABC的角平分線,
∴∠FAD=∠EAD,
∵AB∥DE,
∴∠FAD=∠EDA,
∴∠EAD=∠EDA,
∴EA=ED(等角對(duì)等邊),
∴平行四邊形AEDF是菱形,
∴AD與EF互相垂直平分.
點(diǎn)評(píng):此題主要考查了畫(huà)平行線,菱形的判定與性質(zhì),關(guān)鍵是掌握菱形的判定方法,判定四邊形為菱形可以結(jié)合菱形的性質(zhì)證出線段相等,角相等,線段互相垂直且平分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•濟(jì)寧)如圖,在平面直角坐標(biāo)系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋轉(zhuǎn)得到的.
(1)請(qǐng)寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo)是
O(0,0)
O(0,0)
,旋轉(zhuǎn)角是
90
90
度;
(2)以(1)中的旋轉(zhuǎn)中心為中心,分別畫(huà)出△A1AC1順時(shí)針旋轉(zhuǎn)90°、180°的三角形;
(3)設(shè)Rt△ABC兩直角邊BC=a、AC=b、斜邊AB=c,利用變換前后所形成的圖案證明勾股定理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•濟(jì)寧)如圖,將矩形ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無(wú)縫隙無(wú)重疊的四邊形EFGH,EH=12厘米,EF=16厘米,則邊AD的長(zhǎng)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•濟(jì)寧)如圖,是由若干個(gè)完全相同的小正方體組成的一個(gè)幾何體的主視圖和左視圖,則組成這個(gè)幾何體的小正方體的個(gè)數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•濟(jì)寧)如圖,在平面直角坐標(biāo)系中,點(diǎn)P坐標(biāo)為(-2,3),以點(diǎn)O為圓心,以O(shè)P的長(zhǎng)為半徑畫(huà)弧,交x軸的負(fù)半軸于點(diǎn)A,則點(diǎn)A的橫坐標(biāo)介于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•濟(jì)寧)如圖,拋物線y=ax2+bx-4與x軸交于A(4,0)、B(-2,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)P是線段AB上一動(dòng)點(diǎn)(端點(diǎn)除外),過(guò)點(diǎn)P作PD∥AC,交BC于點(diǎn)D,連接CP.
(1)求該拋物線的解析式;
(2)當(dāng)動(dòng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),BP2=BD•BC;
(3)當(dāng)△PCD的面積最大時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案