【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是AC的中點(diǎn),且∠A+∠CDB=90°,過點(diǎn)A,D作⊙O,使圓心O在AB上,⊙O與AB交于點(diǎn)E.
(1)求證:直線BD與⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直徑.
【答案】
(1)證明:連接OD、DE,
∵OA=OD,
∴∠A=∠ADO,
∵∠A+∠CDB=90°,
∴∠ADO+∠CDB=90°,
∴∠ODB=180°﹣90°=90°,
∴OD⊥BD,
∵OD是⊙O半徑,
∴直線BD與⊙O相切;
(2)解:∵AE是⊙O直徑,
∴∠ADE=90°=∠C,
∴BC∥DE,
∴△ADE∽△ACB,
∴
∵D為AC中點(diǎn),
∴AD=DC= AC,
∴AE=BE= AB,
DE是△ACB的中位線,
∴AE= AB,DE= BC= ×6=3,
設(shè)AD=4a,AE=5a,
在Rt△ADE中,由勾股定理得:DE=3a=3,
解得:a=1,
∴AE=5a=5,
答:⊙O的直徑是5.
【解析】(1)連接OD、DE,易證∠A=∠ADO,證出∠A+∠CDB=90°,得出∠ADO+∠CDB=90°,可得到OD⊥BD,根據(jù)切線的判定定理即可得出結(jié)論。
(2)根據(jù)圓周角定理得出∠ADE==∠C,從而證得BC∥DE,由平行得三角形相似得出△ADE∽△ACB,得出對應(yīng)邊成比例,再證明DE是△ACB的中位線,然后根據(jù)勾股定理建立方程求出a的值,即可求出圓的直徑。
【考點(diǎn)精析】掌握勾股定理的概念和三角形中位線定理是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線:與直線:交于點(diǎn),與y軸交于點(diǎn),與x軸交于點(diǎn)C.
求直線的函數(shù)表達(dá)式;
求的面積;
在平面直角坐標(biāo)系中有一點(diǎn),使得,請求出點(diǎn)P的坐標(biāo);
點(diǎn)M為直線上的動(dòng)點(diǎn),過點(diǎn)M作y軸的平行線,交于點(diǎn)N,點(diǎn)Q為y軸上一動(dòng)點(diǎn),且為等腰直角三角形,請直接寫出滿足條件的點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)填空,并在括號(hào)內(nèi)標(biāo)注理由.
已知:如圖①,DE∥BC,∠2=∠B,求證∠B+∠BFE=180°.
證明:∵DEBC(已知),
∴∠1=∠ ( ).
又∵∠2=∠B( 已知 ),∴∠ =∠ .
∴ EF ( ).
∴∠B+∠BFE=180°( ).
(2)如圖②,ABCD,EF與AB,CD分別相交于點(diǎn)M,N,MH平分∠BMN,與CD相交于點(diǎn)H. 若∠1=40° ,求∠2的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)依次為A(﹣1,2),B(﹣4,1),C(﹣2,﹣2)
(1)請寫出△ABC關(guān)于x軸對稱的點(diǎn)A1、B1、C1的坐標(biāo);
(2)請?jiān)谶@個(gè)坐標(biāo)系中作出△ABC關(guān)于y軸對稱的△A2B2C2;
(3)計(jì)算:△A2B2C2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD的頂點(diǎn)為A(1,2),B(-1,2),C(-1,-2),D(1,-2),點(diǎn)M和點(diǎn)N同時(shí)從E(0,2)點(diǎn)出發(fā),沿四邊形的邊做環(huán)繞勻速運(yùn)動(dòng),M點(diǎn)以1單位/s的速度做逆時(shí)針運(yùn)動(dòng),N點(diǎn)以2單位/s的速度做順時(shí)針運(yùn)動(dòng),則點(diǎn)M和點(diǎn)N第2017次相遇時(shí)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2011年長江中下游地區(qū)發(fā)生了特大旱情.為抗旱保豐收,某地政府制定了農(nóng)戶投資購買抗旱設(shè)備的補(bǔ)貼辦法,其中購買Ⅰ型、Ⅱ型抗旱設(shè)備投資的金額與政府補(bǔ)的額度存在下表所示的函數(shù)對應(yīng)關(guān)系.
(1)分別求y1和y2的函數(shù)解析式;
(2)有一農(nóng)戶同時(shí)對Ⅰ型、Ⅱ型兩種設(shè)備共投資10萬元購買,請你設(shè)計(jì)一個(gè)能獲得最大補(bǔ)貼金額的方案,并求出按此方案能獲得的最大補(bǔ)貼金額.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從2017年起,昆明將迎來“高鐵時(shí)代”,這就意味著今后昆明的市民外出旅行的路程與時(shí)間將大大縮短,但也有不少游客根據(jù)自己的喜好依然選擇乘坐普通列車;已知從昆明到某市的高鐵行駛路程是400千米,普通列車的行駛路程是高鐵行駛路程的1.3倍,請完成以下問題:(1)普通列車的行駛路程為________千米;(2)若高鐵的平均速度(千米/時(shí))是普通列車平均速度(千米/時(shí))的2.5倍,且乘坐高鐵所需時(shí)間比乘坐普通列車所需時(shí)間縮短3小時(shí),求普通列車和高鐵的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的對角線交于點(diǎn)O,下列哪組條件不能判斷四邊形ABCD是平行四邊形( ).
A. OA=OC,OB=OD B. ∠BAD=∠BCD,AB∥CD
C. AD∥BC,AD=BC D. AB=CD,AO=CO
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com