【題目】如圖8,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)為(0,3),點(diǎn)B(,)是以O(shè)A為直徑的⊙M上的一點(diǎn),且tan∠AOB=,BH⊥軸,H為垂足,點(diǎn)C(,).
(1)求H點(diǎn)的坐標(biāo);
(2)求直線BC的解析式;
(3)直線BC是否與⊙M相切?請說明理由.
【答案】(1) H(0,); (2) =- +4;(3)見解析.
【解析】分析:
(1)由已知易得tan∠AOB=,BH=,由此即可解得m=,從而可得點(diǎn)H的坐標(biāo);
(2)由(1)可知點(diǎn)B的坐標(biāo)為結(jié)合點(diǎn)C的坐標(biāo)即可由待定系數(shù)法求得直線BC的解析式;
(3)設(shè)直線BC與兩坐標(biāo)軸的交點(diǎn)分別為E、F,由(2)中所得解析式可求得點(diǎn)E、F的坐標(biāo),過點(diǎn)M作MN⊥BC于點(diǎn)N,由S△FME=EF·MN=FM·EO,可證得MN的長等于⊙M的半徑,由此即可得到BC是⊙M的切線.
詳解:
(1)由tan∠AOB=,得=,
∴OH=2BH,又B(,),即=2×=,
∴H點(diǎn)的坐標(biāo)為H(0,);
(2)設(shè)過點(diǎn)B(,)及點(diǎn)C(,)
的直線解析式為:=+,
把BC坐標(biāo)分別代入,得:,
解得,
∴直線BC的解析式為:=- +4;
(3)BC與⊙M相切,理由如下
如下圖,設(shè)直線BC:分別與軸軸交于點(diǎn)EF,
則點(diǎn)E的坐標(biāo)為(3,0)點(diǎn)F的坐標(biāo)為(0,4),
∴OE=3,OF=4,
∴EF=5,
過圓心M作MN⊥EF,垂足為N,連結(jié)ME,
∵S△FME=EF·MN=FM·EO,
∴得EF·MN=FM·EO,
∵⊙M的直徑為3,
∴⊙M的半徑OM=1.5,
∴MF=4-1.5=2.5,
∴MN==,
即圓心M到直線BC的距離等于⊙M的半徑,
∴直線BC是⊙M的切線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的四個頂點(diǎn)分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.
(1)當(dāng)m=4,n=20時.
①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.
②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.
(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關(guān)系;若不能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)市委政府“加快建設(shè)天藍(lán)水碧地綠的美麗長沙”的號召,我市某街道決定從備選的五種樹中選購一種進(jìn)行栽種.為了更好地了解社情民意,工作人員在街道轄區(qū)范圍內(nèi)隨機(jī)抽取了部分居民,進(jìn)行“我最喜歡的一種樹”的調(diào)查活動(每人限選其中一種樹),并將調(diào)查結(jié)果整理后,繪制成如圖兩個不完整的統(tǒng)計(jì)圖:
請根據(jù)所給信息解答以下問題:
(1)這次參與調(diào)查的居民人數(shù)為: ;
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請計(jì)算扇形統(tǒng)計(jì)圖中“楓樹”所在扇形的圓心角度數(shù);
(4)已知該街道轄區(qū)內(nèi)現(xiàn)有居民8萬人,請你估計(jì)這8萬人中最喜歡玉蘭樹的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十一”黃金周期間,某風(fēng)景區(qū)在7天假期中每天旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負(fù)數(shù)表示比前一天少的人數(shù))(單位:萬人),其中9月30日的游客人數(shù)為2萬:
(1)請問10月2日的游客人數(shù)為多少?
(2)請判斷7天內(nèi)游客人數(shù)最多的是哪天?最少的是哪天?它們相差多少萬人?
(3)求這一次黃金周期間該風(fēng)景區(qū)游客總?cè)藬?shù).(假設(shè)每天游客都不重復(fù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,所有小正方形的邊長都為1個單位,A、B、C均在格點(diǎn)上.
(1)過點(diǎn)C畫線段AB的平行線CD;
(2)過點(diǎn)A畫線段BC的垂線,垂足為E;
(3)線段AE的長度是點(diǎn) 到直線 的距離;
(4)比較線段AE、AB、BC的大小關(guān)系(用“<”連接).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以O為原點(diǎn)的直角坐標(biāo)系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)(x>0)與AB相交于點(diǎn)D,與BC相交于點(diǎn)E,若BD=3AD,且△ODE的面積是12,則k=( 。
A. 6 B. 9 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(5分)某自行車廠一周計(jì)劃生產(chǎn)1400輛自行車,平均每天生產(chǎn)200輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計(jì)劃量相比有出入,下表是某周的生產(chǎn)情況(超產(chǎn)為正,減產(chǎn)為負(fù)):
⑴根據(jù)記錄可知前三天共生產(chǎn)________輛;
⑵產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)________輛;
⑶該廠實(shí)行計(jì)件工資制,每輛車60元,超額完成任務(wù)每輛獎15元,少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的頂點(diǎn)坐標(biāo)為Q(2,-1),且與y軸交于點(diǎn)C(0,3),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),點(diǎn)P是該拋物線上的一動點(diǎn),從點(diǎn)C沿拋物線向點(diǎn)A運(yùn)動(點(diǎn)P與A不重合),過點(diǎn)P作PD∥y軸,交AC于點(diǎn)D.
【1】求該拋物線的函數(shù)關(guān)系式;
【1】求點(diǎn)P在運(yùn)動的過程中,線段PD的最大值;
【1】當(dāng)△ADP是直角三角形時,求點(diǎn)P的坐標(biāo);
【1】在題(3)的結(jié)論下,若點(diǎn)E在x軸上,點(diǎn)F在拋物線上,問是否存在以A、P、E、F為頂點(diǎn)的平行四邊形?若存在,求點(diǎn)F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,A、B在數(shù)軸上對應(yīng)的數(shù)分別用a、b表示,且(a-20)2+|b+10|=0,P是數(shù)軸上的一個動點(diǎn).
(1)在數(shù)軸上標(biāo)出A、B的位置,并求出A、B之間的距離;
(2)已知線段OB上有點(diǎn)C且|BC|=6,當(dāng)數(shù)軸上有點(diǎn)P滿足PB=2PC時,求P點(diǎn)對應(yīng)的數(shù);
(3)動點(diǎn)P從原點(diǎn)開始第一次向左移動1個單位長度,第二次向右移動3個單位長度,第三次向左移動5個單位長度,第四次向右移動7個單位長度,…….點(diǎn)P能移動到與A或B重合的位置嗎?若不能,請直接回答;若能,請直接指出,第幾次移動,與哪一點(diǎn)重合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com