【題目】已知,如圖2211拋物線yax2+2axc(a>0)y軸交于點C,與x軸交于AB兩點,點A在點B左側(cè).點B的坐標為(1,0),OC=3OB.

(1)求拋物線的解析式;

(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;

(3)拋物線線上是否存在一點P,使,若存在,請求出點的坐標;若不存在請說明理由.

【答案】(1),;(2);(3)存在點P,.

【解析】

①已知B坐標,可求得OB,OC,再將B,C坐標帶入拋物線,即可求出解析式;

②根據(jù)A,C坐標可求直線解析式,由于AB,OC為定值嗎,則△ABC面積不變,若四邊形ABCD面積最大,則三角形的面積最大,可過Dx軸的垂線,可知△ADC的面積為DMYU OA積的一半,可設(shè)N坐標,分別帶入AC和拋物線解析式,可求DM長度,進而求四邊形ABCD的面積與N點橫坐標間的函數(shù)關(guān)系,根據(jù)函數(shù)性質(zhì)即可求出四邊形ABCD的最大面積;

③本題分情況討論1、過Cx軸的平行線,與拋物線的交點符合P點的要求,此時P,C的縱坐標相同,帶入拋物線的解析式即可;2、將AC平移,令C點落在x軸,A點落到拋物線上,根據(jù)平行四邊形性質(zhì),得出P點縱坐標,帶入拋物線解析式可求P點坐標.

(1)

(2)令,即 A為(-3,0)

易求AC的解析式為,過點HACE

設(shè)點D,則點E

設(shè)面積S,

時,.

(3)存在點P,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為直線x=﹣1,給出四個結(jié)論:①c0;②若B(﹣y1),C(﹣y2)為圖象上的兩點,則y1y2;③2ab0;④0,其中正確的結(jié)論是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:DAC延長線上一點,且M是線段CD上一個動點,連接BM,延長MBH,使得以點B為中心,將線段BH逆時針旋轉(zhuǎn)得到線段BQ,連接AQ

1)依題意補全圖形;

2)求證:

3)點N是射線AC上一點,且點N是點M關(guān)于點D的對稱點,連接BN,如果 求線段AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD沿著直線BD折疊,使點C落在C/處,BC/ADE,AD=8AB=4,DE的長=________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:是圓的兩條直徑,連接

如圖①,求證:,;

如圖②,過點于點,交圓于點,在上取一點,使,

求證:四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了提高學生的消防意識,舉行了消防知識競賽,所有參賽學生分別設(shè)有一、二、三等獎和紀念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據(jù)圖中所經(jīng)信息解答下列問題:

1)這次知識競賽共有多少名學生?

2)“二等獎”對應(yīng)的扇形圓心角度數(shù),并將條形統(tǒng)計圖補充完整;

3)小華參加了此次的知識競賽,請你幫他求出獲得“一等獎或二等獎”的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,,,交邊(點不與、重合).、分別平分,,若,則的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】百子回歸圖是由 1,2,3,…,100 無重復排列而成的正方形數(shù)表,它是一部數(shù)化的澳門簡史中央四 “19 99 12 20”標示澳門回歸日期,最后一行中間兩 “23 50”標示澳門面積,…,同時它也是十階幻方, 其每行 10 個數(shù)之和、每列 10 個數(shù)之和每條對角線10 個數(shù)之和均相等,則這個和為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,B兩地相距20千米,甲、乙兩人都從A地去B,圖中l1l2分別表示甲、乙兩人所走路程s(千米)與時間t(小時)之間的關(guān)系,下列說法:乙晚出發(fā)1小時;乙出發(fā)3小時后追上甲;甲的速度是4千米/;乙先到達B.其中正確的是________.

查看答案和解析>>

同步練習冊答案