年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
實驗學(xué)校九年級一班十名同學(xué)定點投籃測試,每人投籃六次,投中的次數(shù)統(tǒng)計如下:
5,4,3,5,5,2,5,3,4,1,則這組數(shù)據(jù)的中位數(shù),眾數(shù)分別為( 。
A.5,5 B.5,4 C.4,4 D.4,5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
問題背景:若矩形的周長為1,則可求出該矩形面積的最大值.我們可以設(shè)矩形的一邊長為,面積為,則與的函數(shù)關(guān)系式為: (當(dāng)>0),利用函數(shù)的圖像或通過配方均可求得該函數(shù)的最大值.
提出新問題:若矩形的面積為1,則該矩形的周長有無最大值或最小值?若有,最大(。┲凳嵌嗌?
分析問題:若設(shè)該矩形的一邊長為(>0),周長為,則與的函數(shù)關(guān)系式為:,問題就轉(zhuǎn)化為研究該函數(shù)的最大(。┲盗.
解決問題:借鑒我們已有研究函數(shù)的經(jīng)驗,探索函數(shù)(當(dāng)>0)的最大(。┲.
(1)實踐操作:填寫下表,并用描點法畫出函數(shù)(當(dāng)>0)的圖像:
(2)觀察猜想:觀察該函數(shù)的圖像,猜想當(dāng)
= 時,函數(shù)(當(dāng)>0)
有最 值(填“大”或“小”),是 .
(3)推理論證:問題背景中提到,通過配方可求二次函數(shù) (當(dāng)>0)的最大值,請你嘗試通過配方求函數(shù)(當(dāng)>0)的最大(。┲,以證明你的猜想. 〔提示:當(dāng)>0時,〕
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
有兩個正方形A,B現(xiàn)將B放在A的內(nèi)部得到圖甲,將A,B并列放置,后構(gòu)造新的正方形得圖乙,若圖甲和圖乙中陰影部分的面積分別為1和12,則正方形A,B的面積之和為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在一次演講比賽中,某班派出的5名同學(xué)參加年級競賽的成績?nèi)缦卤恚▎挝唬悍郑,其中隱去了3號同學(xué)的成績,但得知5名同學(xué)的平均成績是21分,那么5名同學(xué)成績的方差是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:拋物線C1:。如圖(1),平移拋物線C1得到拋物線C2,C2經(jīng)過C1的頂點O和A(2,0),C2的對稱軸分別交C1、C2于點B、D。
(1)求拋物線C2的解析式;
(2)探究四邊形ODAB的形狀并證明你的結(jié)論;
(3)如圖(2),將拋物線C2向m個單位下平移(m>0)得拋物線C3,C3的頂點為G,與y軸交于M。點N是M關(guān)于x軸的對稱點,點P()在直線MG上。問:當(dāng)m為何值時,在拋物線C3上存在點Q,使得以M、N、P、Q為頂點的四邊形為平行四邊形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com