【題目】如圖,點(diǎn)A,B,C,D在⊙O上,點(diǎn)O在∠D的內(nèi)部,四邊形OABC為平行四邊形,則∠OAD+∠OCD=(
A.55°
B.60°
C.65°
D.70°

【答案】B
【解析】解:∵四邊形OABC為平行四邊形, ∴∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.
∵四邊形ABCD是圓的內(nèi)接四邊形,
∴∠D+∠B=180°.
又∠D= ∠AOC,
∴3∠D=180°,
解得∠D=60°.
∴∠OAB=∠OCB=180°﹣∠B=60°.
∴∠OAD+∠OCD=360°﹣(∠D+∠B+∠OAB+∠OCB)=360°﹣(60°+120°+60°+60°)=60°.
故選B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平行四邊形的性質(zhì)和圓周角定理的相關(guān)知識可以得到問題的答案,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個交點(diǎn)的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正確的結(jié)論有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙、丙三種糖果混合而成的什錦糖100千克,其中各種糖果的單價和千克數(shù)如表所示,商家用加權(quán)平均數(shù)來確定什錦糖的單價.

甲種糖果

乙種糖果

丙種糖果

單價元/千克

15

25

30

千克數(shù)

40

40

20

1求該什錦糖的單價.

2為了使什錦糖的單價每千克至少降低2元,商家計劃在什錦糖中加入甲、丙兩種糖果共100千克,問其中最多可加入丙種糖果多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個條件后,能判定ABC≌△ADC的是( )

A. AC=AC B. BAC=DAC C. BCA=DCA D. B=D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD紙片中,已知∠A=160°,B=30°,C=60°,四邊形ABCD紙片分別沿EF,GH,OP,MN折疊,使AA′、BB′、CC′、DD′重合,則∠1+2+3+4+5+6+7﹣8的值是(  )

A. 600° B. 700° C. 720° D. 800°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,連接AE,CD,AECD交于點(diǎn)M,AEBC交于點(diǎn)N.

(1)求證:AE=CD;

(2)求證:AE⊥CD;

(3)連接BM,有以下兩個結(jié)論:①BM平分∠CBE;②MB平分∠AMD.其中正確的有   (請寫序號,少選、錯選均不得分).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=10,AD=4,點(diǎn)P在邊DC上,且△PAB是直角三角形,請在圖中標(biāo)出符合題意的點(diǎn)P,并直接寫出PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC,則下列結(jié)論:①abc<0;② ;③ac﹣b+1=0;④OAOB=﹣ .其中正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)已知關(guān)于的方程

1求證:方程總有兩個實(shí)數(shù)根;

2如果為正整數(shù),且方程的兩個根均為整數(shù),求的值.

查看答案和解析>>

同步練習(xí)冊答案