(2013•黔東南州一模)如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為Q(2,-1),且與y軸交于點C(0,3),與x軸交于A,B兩點(點A在點B的右側(cè)),點P是該拋物線上的一動點,從點C沿拋物線向點A運(yùn)動(點P與A不重合),過點P作PD∥y軸,交AC于點D.
(1)求該拋物線的函數(shù)關(guān)系式;
(2)是否存在點P,使△ADP是直角三角形時?若存在,求點P的坐標(biāo);若不存在,請說明理由.
分析:(1)已知了拋物線的頂點坐標(biāo),可將拋物線的解析式設(shè)為頂點式,然后將函數(shù)圖象經(jīng)過的C點坐標(biāo)代入上式中,即可求出拋物線的解析式;
(2)由于PD∥y軸,所以∠ADP≠90°,若△ADP是直角三角形,可考慮兩種情況:
①以點P為直角頂點,此時AP⊥DP,此時P點位于x軸上(即與B點重合),由此可求出P點的坐標(biāo);
②以點A為直角頂點,易知OA=OC,則∠OAC=45°,所以O(shè)A平分∠CAP,那么此時D、P關(guān)于x軸對稱,可求出直線AC的解析式,然后設(shè)D、P的橫坐標(biāo),根據(jù)拋物線和直線AC的解析式表示出D、P的縱坐標(biāo),由于兩點關(guān)于x軸對稱,則縱坐標(biāo)互為相反數(shù),可據(jù)此求出P點的坐標(biāo).
解答:解:(1)∵拋物線的頂點為Q(2,-1),
∴設(shè)拋物線的解析式為y=a(x-2)2-1,
將C(0,3)代入上式,得:
3=a(0-2)2-1,a=1;
∴y=(x-2)2-1,即y=x2-4x+3;

(2)分兩種情況:
①當(dāng)點P1為直角頂點時,點P1與點B重合;
令y=0,得x2-4x+3=0,解得x1=1,x2=3;
∵點A在點B的右邊,
∴B(1,0),A(3,0);
∴P1(1,0);
②當(dāng)點A為△AP2D2的直角頂點時;
∵OA=OC,∠AOC=90°,
∴∠OAD2=45°;
當(dāng)∠D2AP2=90°時,∠OAP2=45°,
∴AO平分∠D2AP2
又∵P2D2∥y軸,
∴P2D2⊥AO,
∴P2、D2關(guān)于x軸對稱;
設(shè)直線AC的函數(shù)關(guān)系式為y=kx+b(k≠0).
將A(3,0),C(0,3)代入上式得:
3k+b=0
b=3
,
解得,
k=-1
b=3
,
∴y=-x+3;
設(shè)D2(x,-x+3),P2(x,x2-4x+3),
則有:(-x+3)+(x2-4x+3)=0,
即x2-5x+6=0;
解得x1=2,x2=3(舍去);
∴當(dāng)x=2時,y=x2-4x+3=22-4×2+3=-1;
∴P2的坐標(biāo)為P2(2,-1)(即為拋物線頂點).
綜上所述,P點坐標(biāo)為P1(1,0),P2(2,-1).
點評:此題主要考查了二次函數(shù)解析式的確定、直角三角形的判定等重要知識點,同時還考查了分類討論的數(shù)學(xué)思想,能力要求較高,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•黔東南州)將一副三角尺如圖所示疊放在一起,則
BE
EC
的值是
3
3
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•黔東南州一模)擲一枚質(zhì)地均勻的硬幣100次,下列說法正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•黔東南州一模)如圖,在Rt△ABC中,∠ACB=90°,點D是斜邊AB的中點,DE⊥AC,垂足為E,若BC=4,CD=2
5
,則BE的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•黔東南州)下列運(yùn)算正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•黔東南州)某中學(xué)九(1)班6個同學(xué)在課間體育活動時進(jìn)行1分鐘跳繩比賽,成績?nèi)缦拢?26,144,134,118,126,152.這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是( 。

查看答案和解析>>

同步練習(xí)冊答案